
WatchMe: Software for Reproducible Monitoring and
Data Collection
Vanessa Sochat1

1 Stanford University Research Computing

DOI: 10.21105/joss.01388

Software
• Review
• Repository
• Archive

Submitted: 08 April 2019
Published: 09 May 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

WatchMe is a simple tool to allow for reproducibly watching for changes in one or more
web pages, system resources, or any task function that is provided to the library. It ad-
dresses a problem in research that it’s highly challenging to create and share reproducible
tasks, meaning:

1. a configuration file (recipe) stores the parameters for tasks including a function to
run, a frequency, and any other necessary variables

2. the tasks are automatically run at some frequency
3. the results of the runs are saved automatically via version control
4. the results collected can be re-assembled into temporal data structures that are

ready for analysis
5. the entire base (configuration, tasks, and results) can be shared via GitHub, and

reproduced by others

With WatchMe, a researcher can easily generate a repository (a watcher) that is configured
to run one or more tasks at a particular frequency, and automatically commit changes to
git. If he or she chooses, the repository can be pushed to a version control service like
GitHub, and the entire configuration and set of tasks is easily reproducible by anyone that
uses the client to get the repository. Each watcher uses git not only for version control
of configuration files, but as a temporal database from which the results of the task runs
can be extracted. Every change to a task within a watcher directory is also recorded via
git, making the entire setup well documented with minimal to no work needed by the
researcher.

Background

Reproducible monitoring and data collection for an individual researcher is a challenging
task. Typically, if a web page or system resource is to be monitored, the researcher must
write custom scripts and extraction steps, and in the best case scenario, he or she uses
version control for the scripts or final result. While many online services exist to watch
for changes in one or more web pages (e.g., see https://visualping.io/ for an example
service), these resources are problematic for research use. Specifically:

1. It’s typically the case that you will be charged for more than a few pages
2. It’s not appropriate for a research setting where you would want programmatic

parsing

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

1

https://doi.org/10.21105/joss.01388
https://github.com/openjournals/joss-reviews/issues/1388
https://www.github.com/vsoch/watchme
https://doi.org/10.5281/zenodo.2633142
http://creativecommons.org/licenses/by/4.0/
https://vsoch.github.io/watchme/
https://visualping.io/
https://doi.org/10.21105/joss.01388

3. The configuration of your watcher is not reproducible.

Thus, WatchMe is ideal for the individual researcher that does not want to (or cannot) pay
for a service, and wants to be able to share their monitoring tasks with other researchers,
such as for a publication or similar. It also allows for collaborative data collection, as
multiple users can run the equivalent task, have data exported named uniquely, and then
submit a pull request to combine the data.

WatchMe Tasks

By default, WatchMe comes with two task types intended to provide general templates
for creating specific monitoring tasks.

Web Tasks

It’s a common need to want to retrieve content from the web, whether that be a request
to get a page, a subset of a page, the download of a file, or a post to an application
programming interface (API). These general tasks perform these operations, with cus-
tomizations to control the url, how the response is parsed, headers and parameters, and
the result written. For example, the general set of web tasks can be used to check a set
of cities for changes to weather or climate, to monitor an API endpoint, track changes in
prices of item(s) of interest, download a file at some frequency, or watch a job board for
changes. For details about setup and usage, see the urls tasks documentation.

System Tasks

The psutils library of functions uses the Python Psutil (“Psutil documentation — psutil
5.6.2 documentation,” n.d.) set of functions to monitor system resources, sensors, and
python environment. Given the naming of data outputs based on the host, if a second user
forked the example repository and ran it on his or her host, he or she could open a pull
request to contribute new data. Given the unique naming of each task file, the data could
co-exist with previous data generated on other hosts. Given the common export formats,
common analyses could be shared and run on the exports by the different users. See the
psutils tasks documentation for details, and continue reading for a specific example. An
example that uses the set of system tasks is discussed next.

Research Usage

The command line usage of watchme, along with making the tool programmatic, also
makes it ideal for usage on research clusters, or custom usage within scripts. Importantly,
WatchMe is able to take a repository of result files produced by one or more contributors,
and export data structures that keep a record of timestamps, results, and commit ids for
each addition of a results file.

Watcher Example

As an example, the repository watchme-system runs a set of hourly tasks to measure the
host networking, cpu and memory usage, sensors (battery, temperature, fans), and other
user and python-specific data. After installing watchme, a second researcher could easily
obtain the task by doing:

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

2

https://vsoch.github.io/watchme/watchers/urls/
https://vsoch.github.io/watchme/watchers/psutils/
https://github.com/vsoch/watchme-system
https://doi.org/10.21105/joss.01388

$ watchme get https://www.github.com/vsoch/watchme-system system

The command above would clone the repository, check that it was a valid Watcher (in-
dicated by presence of a configuration file named watchme.cfg) and then download the
folder to a new watcher named “system” (the second argument) in the default Watchme
base folder, located at $HOME/.watchme. The organization of any watcher is intuitive
- the top level folder is the name for the watcher, and the folders inside that begin with
“task-” represent the various task folders:

/.watchme/system$ tree
.
��� README.md
��� task-cpu
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-memory
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-network
� ��� result.json
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-python
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-sensors
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-system
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� task-users
� ��� TIMESTAMP
� ��� vanessa-thinkpad-t460s_vanessa.json
��� watchme.cfg

Notice that each task folder has a result file, along with a timestamp to indicate when
the watcher was last run. The user can edit the watchme.cfg if desired, or simply activate
and schedule the watcher (optionally disabling a subset of tasks) to run at some frequency
(e.g., hourly) and commit to git. No further work is required by the researcher other than
keeping the host machine turned on. The researcher can push the results to a GitHub
repository (as was done in this case) and at any time, export the results for a particular
result file. In the command below, we use the “watchme” client to export the watcher
folder “system” for a task called “task-memory”. We ask the watcher to parse the result
content as json:

$ watchme export system task-memory vanessa-thinkpad-t460s_vanessa.json --json

{
"commits": [

"02bccc9b0dbbd885125ae653fa5034dbf1d15eb4",
"d98aaaae49c2c5106393beff5ebb51225eba8ac6",
...

],

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

3

https://doi.org/10.21105/joss.01388

"dates": [
"2019-04-07 15:00:02 -0400",
"2019-04-07 14:00:02 -0400",

...
],
"content": [

{
"virtual_memory": {

"total": 20909223936,
"available": 6038528000,
"percent": 71.1,
"used": 13836861440,
"free": 201441280,
"active": 16094294016,
"inactive": 3581304832,
"buffers": 3842781184,
"cached": 3028140032,
"shared": 736833536

}
},
{

"virtual_memory": {
"total": 20909223936,
"available": 6103392256,
"percent": 70.8,
"used": 13769531392,
"free": 202334208,
"active": 16014094336,
"inactive": 3663310848,
"buffers": 3859390464,
"cached": 3077967872,
"shared": 755183616

}
},
...

]
}

While only two commits are shown in the result above, an actual export for this particular
watcher has results for memory metrics collected on the hour. The researcher could then
perform an analysis using the data collected. As an example, here is a plot from such an
analysis that tracks virtual memory usage of this author, recorded every hour, over two
weekend days.

Interestingly, we can see a pattern that correlates with the activity of the author during
the day. Virtual memory usage is low from the previous evening (1800 hours) through
the early morning (0600 hours) and then rises sharply when the author starts to work. It
goes down briefly in the early afternoon when the author pauses for a break, and picks up
afterward, stopping when it’s time for dinner. We see that the system’s core temperature
follows a similar trend:

We also see that the computer was briefly unplugged after the morning work session.

These kinds of metrics are interesting to answer research questions about system resources
and behavior, and represent only the tip of the iceberg in terms of the scope of data that
WatchMe could help collect. For example, WatchMe would have interesting use cases

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

4

https://github.com/vsoch/watchme-system/blob/master/data/watchme-task-analysis.ipynb
https://doi.org/10.21105/joss.01388

Figure 1: Virtual memory usage graph

Figure 2: Core temperature graph

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

5

https://doi.org/10.21105/joss.01388

Figure 3: Battery usage graph

for monitoring resources or jobs for HPC, or watching for changes in any kind of web
resource (prices, climate data, API endpoints, etc.). For other examples, see the WatchMe
Examples page.

More information on WatchMe, including examples, information on watcher tasks, and
function documentation is provided at the WatchMe documentation. Others are encour-
aged to give feedback, ask questions, and request new task functions or examples on the
issue board.

References

Psutil documentation — psutil 5.6.2 documentation. (n.d.). https://psutil.readthedocs.
io/en/latest/index.html.

Sochat, (2019). WatchMe: Software for Reproducible Monitoring and Data Collection. Journal of Open Source Software, 4(37), 1388.
https://doi.org/10.21105/joss.01388

6

https://vsoch.github.io/watchme/examples
https://vsoch.github.io/watchme/examples
https://psutil.readthedocs.io/en/latest/index.html
https://psutil.readthedocs.io/en/latest/index.html
https://doi.org/10.21105/joss.01388

	Summary
	Background
	WatchMe Tasks
	Web Tasks
	System Tasks

	Research Usage
	Watcher Example

	References

