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Introduction

Machine learning is needed and used everywhere. It has fundamentally changed all data-
driven disciplines, like health-care, biology, finance, legal, military, security, transporta-
tion, and many others. The increasing availability of large annotated data sources com-
bined with recent developments in Machine Learning revolutionizes many disciplines.
However, predictive models become more and more complex. It is not uncommon to have
ensembles of predictive models with thousands or millions of parameters. Such models
act as blackboxes. It is almost impossible for a human to understand reasons for model
decisions.

This lack of interpretability often leads to harmful situations. Models are not working
properly or are hard to debug, results are biased in a systematic way, data drift leads
to the deterioration in models performance, the model is wrong but no-one can explain
what caused a wrong prediction. Many examples for these problems are listed in the
Weapons of Math Destruction, a bestseller with an expressive subtitle How Big Data
Increases Inequality and Threatens Democracy (O’Neil, 2016). Reactions for some of
these problems are new legal regulations, like the General Data Protection Regulation
and the Right to Explanation (Ruiz, 2018).

New tools are being created to support model interpretability. The most known methods
are Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh, & Guestrin,
2016), SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) and Descriptive
mAchine Learning EXplanations (DALEX) (Biecek, 2018). General purpose libraries for
interpretable Machine Learning in Python are skater (Choudhary, Kramer, & team, 2018)
and ELI5.

An interesting alternative to these tools is the methodology of Ceteris Paribus Profiles
and their averages called Partial Dependency Plots. They enable to understand how the
model response would change if a selected variable is changed. It’s a perfect tool for
What-If scenarios. Ceteris Paribus is a Latin phrase meaning all else unchanged. These
plots present the change in model response as the values of one feature change with all
others being fixed. Ceteris Paribus method is model-agnostic - it works for any Machine
Learning model. The idea is an extension of PDP (Partial Dependency Plots) (Friedman,
2001) and ICE (Individual Conditional Expectations) plots (Goldstein, Kapelner, Bleich,
& Pitkin, 2015). It allows explaining single observations for multiple variables at the same
time.

In this paper, we introduce a pyCeterisParibus library for Python that supports a
wide range of tools built on Ceteris Paribus Profiles. There might be several motivations
behind utilizing this idea. Imagine a person gets a low credit score. The client wants
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to understand how to increase the score and the scoring institution (e.g., a bank) should
be able to answer such questions. Moreover, this method is useful for researchers and
developers to analyze, debug, explain and improve Machine Learning models, assisting
the entire process of the model design. The more detailed demonstration is available in
the Examples section.

pyCeterisParibus library

pyCeterisParibus is a Python library based on an R package CeterisParibus (Biecek,
2019). It is an open source software released on the Apache license.

The workflow consists of three steps:

• wrapping models into a unified representation
• calculating profiles for given observations, variables and models
• plotting the profiles

Plots are drawn using a separate D3.js library which produces interactive Ceteris Paribus
plots for both Python (this package) and R implementations. This package allows ex-
plaining multiple observations and observing local behaviours of the model. For this
purpose, methods for sampling and selecting neighbouring observations are implemented
along with the Gower’s distance (Gower, 1971) function. A more detailed description
might be found in the package documentation.

Examples

We demonstrate Ceteris Paribus Plots using the well-known Titanic dataset. In this prob-
lem, we examine the chance of survival for Titanic passengers. We start with preprocessing
the data and creating an XGBoost model.

import pandas as pd
df = pd.read_csv('titanic_train.csv')

y = df['Survived']
x = df.drop(['Survived', 'PassengerId', 'Name', 'Cabin', 'Ticket'],

inplace=False, axis=1)

valid = x['Age'].isnull() | x['Embarked'].isnull()
x = x[-valid]
y = y[-valid]

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y,

test_size=0.2, random_state=42)

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer

# We create the preprocessing pipelines for both numeric and categorical data.
numeric_features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
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numeric_transformer = Pipeline(steps=[
('scaler', StandardScaler())])

categorical_features = ['Embarked', 'Sex']
categorical_transformer = Pipeline(steps=[

('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(
transformers=[

('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)])

from xgboost import XGBClassifier
xgb_clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', XGBClassifier())])
xgb_clf.fit(X_train, y_train)

Here the pyCeterisParibus starts. Since this library works in a model agnostic fashion,
first we need to create a wrapper around the model with uniform predict interface.

from ceteris_paribus.explainer import explain
explainer_xgb = explain(xgb_clf, data=x, y=y, label='XGBoost',

predict_function=lambda X: xgb_clf.predict_proba(X)[::, 1])

Single variable profile

Let’s look at Mr Ernest James Crease, the 19-year-old man, travelling on the 3rd class
from Southampton with an 8 pounds ticket in his pocket. He died on the Titanic. Most
likely, this would not have been the case had Ernest been a few years younger. Figure
1 presents the chance of survival for a person like Ernest at different ages. We can see
things were tough for people like him unless they were a child.

ernest = X_test.iloc[10]
label_ernest = y_test.iloc[10]
from ceteris_paribus.profiles import individual_variable_profile
cp_xgb = individual_variable_profile(explainer_xgb, ernest, label_ernest)

Having calculated the profile we can plot it. Note, that plot_notebook might be used
instead of plot when used in Jupyter notebooks.

from ceteris_paribus.plots.plots import plot
plot(cp_xgb, selected_variables=["Age"])

Many models

The above picture explains the prediction of XGBoost model. What if we compare various
models?

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
rf_clf = Pipeline(steps=[('preprocessor', preprocessor),
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Figure 1: Chance of survival depending on age

('classifier', RandomForestClassifier())])
linear_clf = Pipeline(steps=[('preprocessor', preprocessor),

('classifier', LogisticRegression())])

rf_clf.fit(X_train, y_train)
linear_clf.fit(X_train, y_train)

explainer_rf = explain(rf_clf, data=x, y=y, label='RandomForest',
predict_function=lambda X: rf_clf.predict_proba(X)[::, 1])

explainer_linear = explain(linear_clf, data=x, y=y, label='LogisticRegression',
predict_function=lambda X: linear_clf.predict_proba(X)[::, 1])

plot(cp_xgb, cp_rf, cp_linear, selected_variables=["Age"])

Clearly, XGBoost offers a better fit than Logistic Regression (Figure 2). Also, it predicts
a higher chance of survival at child’s age than the Random Forest model does.

Profiles for many variables

This time we have a look at Miss. Elizabeth Mussey Eustis. She is 54 years old, travels
at 1st class with her sister Marta, as they return to the US from their tour of southern
Europe. They both survived the disaster.

elizabeth = X_test.iloc[1]
label_elizabeth = y_test.iloc[1]
cp_xgb_2 = individual_variable_profile(explainer_xgb, elizabeth, label_elizabeth)

plot(cp_xgb_2, selected_variables=["Pclass", "Sex", "Age", "Embarked"])

Would she have returned home if she had travelled at 3rd class or if she had been a man?
As we can observe (Figure 3) this is less likely. On the other hand, for a first class, female
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Figure 2: The probability of survival estimated with various models.

Figure 3: Profiles for many variables.
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Figure 4: Interaction with gender. Apart from charts with Ceteris Paribus Profiles (top of the
visualisation), we can plot a table with observations used to calculate these profiles (bottom of the
visualisation).

passenger chances of survival were high regardless of age. Note, this was different in the
case of Ernest. Place of embarkment (Cherbourg) has no influence, which is expected
behaviour.

Feature interactions and average response

Now, what if we look at passengers most similar to Miss. Eustis (middle-aged, upper
class)?

from ceteris_paribus.select_data import select_neighbours
neighbours = select_neighbours(X_train, elizabeth,

selected_variables=['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'],
n=15)

cp_xgb_ns = individual_variable_profile(explainer_xgb, neighbours)

plot(cp_xgb_ns, color="Sex", selected_variables=["Pclass", "Age"],
aggregate_profiles='mean', size_pdps=6, alpha_pdps=1, size=2)

There are two distinct clusters of passengers determined with their gender (Figure 4),
therefore a PDP average plot (on grey) does not show the whole picture. Children of
both genders were likely to survive, but then we see a large gap. Also, being female
increased the chance of survival mostly for second and first class passengers.

Plot function comes with extensive customization options. List of all parameters might
be found in the documentation. Additionally, one can interact with the plot by hovering
over a point of interest to see more details. Similarly, there is an interactive table with
options for highlighting relevant elements as well as filtering and sorting rows.
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