
DynaMo: Dynamic Body Shape and Motion Capture
with Intel RealSense Cameras
Abhishektha Boppana1 and Allison P. Anderson1

1 Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado
Boulder 1

DOI: 10.21105/joss.01466

Software
• Review
• Repository
• Archive

Submitted: 08 May 2019
Published: 29 September 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Background

Human body shape can be captured with a variety of methodologies, including laser lines,
structured light, photogrammetry, and millimeter waves (Daanen & Haar, 2013). However,
these technologies require expensive modules and have limited ability to capture dynamic
changes in body shape.
Motion capture with specific markers is commonly done through camera-based motion track-
ing (Windolf, Götzen, & Morlock, 2008) These systems for marker tracking are often cost
prohibitive and unable to capture surface morphology.
Recently, Intel released the D415 and D435 RealSense Depth Cameras, which use near-infrared
structured light patterns and two infrared imagers to capture depth information at up to 90
frames per second. Purchasing a set of these cameras is more affordable than buying a
dedicated motion-capture system for shape or marker tracking.
While Intel provides the librealsense library to interface with their cameras, it lacks tools
to use multiple devices at once to capture shape and marker-tracking information. DynaMo
builds upon librealsense to provide additional capability for researchers looking to capture
such data.
DynaMo is designed to primarily assist those in the biomechanics and medical fields in cap-
turing motion or body-shape data. It is currently being used in the Anderson Bioastronautics
Research Group to capture dynamic changes in foot morphology.

Figure 1: Sample frames collected by DynaMo showing dynamic shape capture (green) and
marker identifaction (gray spheres)

Summary

DynaMo is a Python library that provides tools to capture dynamic changes in body shape and
track locations of markers using Intel RealSense D4XX cameras. DynaMo was developed from

Boppana et al., (2019). DynaMo: Dynamic Body Shape and Motion Capture with Intel RealSense Cameras. Journal of Open Source Software,
4(41), 1466. https://doi.org/10.21105/joss.01466

1

https://doi.org/10.21105/joss.01466
https://github.com/openjournals/joss-reviews/issues/1466
https://github.com/anderson-cu-bioastronautics/dynamo_realsense-capture
https://doi.org/10.5281/zenodo.3464497
http://creativecommons.org/licenses/by/4.0/
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://doi.org/10.21105/joss.01466


the examples provided by Intel in the Python librealsense library. It has been successfully
tested streaming six cameras at 90 frames per second, all connected to one computer. DynaMo
consists of several scripts that allow for calibration of multiple RealSense D4XX cameras to
a common global coordinate system, simultaneous streaming of multiple RealSense D4XX
cameras, viewing of data from multiple RealSense D4XX cameras in pointcloud format, and
identification of reflecting markers from the pointclouds. The library is optimized to reduce
the number of dropped frames while streaming.
DynaMo allows for the capture of depth, infrared, and color frames at an (u × v) resolution
from Intel RealSense cameras. The values that are captured in each frame are listed below:

• Depth frames: s, where s is the distance to the object
• Infrared frames: Y , where Y is a single value from 0-255 denoting the monochrome

pixel value
• Color frames: [R,G,B], where R,G,B are red, green, and blue values, stacked to

represent the color value of the pixel. This results in a (u× v × 3) dimensional frame.

The pinhole camera model (Sturm, 2014) projects 3D points from the world [x, y, z] onto a
2D image plane [u, v] using the following formula:

s

uv
1

 = K ×

xy
z


Where K is a matrix describing the camera’s intrinsic properties, and s is the distance between
the real-world point and the image plane. These properties include the focal length (fx and
fy) and image offset (ppx and ppy) in each direction. They are represented in the matrix as:

K =

fx 0 ppx
0 fy ppy
0 0 1


Since we are collecting 2D frames and we want to know the 3D location of the point to
reconstruct the pointcloud, we can simply invert the K matrix and solve for the [x, y, z]
location as we know s, the distance between the 3D point and the 2D plane, and [u, v], the
coordinate of the point in the 2D plane:

xy
z

 =


1

fx
0

−ppx
fx

0
1

fy

−ppy
fy

0 0 1


s ∗ us ∗ v

s



This transformation is known in the computer vision community, and is crucial to the functions
present in DynaMo. DynaMo uses this transformation extensively in its calibration, streaming,
and marker-tracking features.
Connected cameras are setup using a device_manager object which handles calls for com-
municating with the cameras. Cameras are first calibrated to a common global coordinate
system by using a defined chessboard viewable by all cameras. The chessboard points are
detected using the findChessboardCorners function of the OpenCV library (Bradski, 2000)
for each camera’s color image. Once the chessboard corners are found, they are translated to
3D points from the perspective of each camera and centered.
The Kabsch algorithm (Kabsch, 1976) is used to compute the (3×3) rotation matrix between
each camera and the known chessboard coordinates. Translation is calculated by taking

Boppana et al., (2019). DynaMo: Dynamic Body Shape and Motion Capture with Intel RealSense Cameras. Journal of Open Source Software,
4(41), 1466. https://doi.org/10.21105/joss.01466

2

https://github.com/IntelRealSense/librealsense
https://doi.org/10.21105/joss.01466


the difference between the known chessboard corners and the camera’s rotated chessboard
perspective, resulting in a (3 × 1) matrix. The rotation matrix is horizontally stacked to the
translation matrix, and a row of [0, 0, 0, 1] is added to create a (4 × 4) matrix. This matrix
transforms each camera’s pointcloud from its local coordinate system to a global coordinate
system.
Streaming is achieved by reading frames from each camera into a dictionary object saved in
the computer’s RAM. DynaMo checks frame numbers for continuity to ensure that frames are
collected synchronously and are not repeated. Once streaming is complete, DynaMo aligns
the images collected by the sensors in each camera to a common image center and saves
the images as pickle objects to the disk. The data from all cameras can then be viewed
as a single pointcloud for each frame from all cameras by using the previously computed
transformation matrix.
A script is included to extract the locations of reflective markers on the pointcloud by simply
thresholding for bright pixels on the infrared frame. Contours are then drawn fo each cluster of
pixels on each camera’s infrared frame; these contours highlight the detected markers by each
camera. The center of each cluster is calculated and then translated into a 3D point using
the depth frame. All points from all cameras are translated into a global coordinate system
using the previously computed transformation matrix, and clusters are scanned for duplicates
seen from multiple cameras.

Acknowledgments

This work was supported by a National Science Foundation Graduate Research under grant
DGE 1650115. The authors would like to thank Dr. Rodger Kram and Dr. Wouter Hoogkamer
for the use of their laboratory space for development and testing of the package.

References

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Daanen, H., & Haar, F. T. (2013). 3D whole body scanners revisited. Displays, 34(4),
270–275. doi:10.1016/j.displa.2013.08.011
Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A, 32(5), 922–923. doi:10.1107/S0567739476001873
Sturm, P. (2014). Pinhole camera model. In K. Ikeuchi (Ed.), Computer vision: A reference
guide (pp. 610–613). Boston, MA: Springer US. doi:10.1007/978-0-387-31439-6_472
Windolf, M., Götzen, N., & Morlock, M. (2008). Systematic accuracy and precision analysis
of video motion capturing systems–exemplified on the vicon-460 system. Journal of Biome-
chanics, 41(12), 2776–2780. doi:10.1016/j.jbiomech.2008.06.024

Boppana et al., (2019). DynaMo: Dynamic Body Shape and Motion Capture with Intel RealSense Cameras. Journal of Open Source Software,
4(41), 1466. https://doi.org/10.21105/joss.01466

3

https://doi.org/10.1016/j.displa.2013.08.011
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1007/978-0-387-31439-6_472
https://doi.org/10.1016/j.jbiomech.2008.06.024
https://doi.org/10.21105/joss.01466

	Background
	Summary
	Acknowledgments
	References

