
WRF-CMake: integrating CMake support into the
Advanced Research WRF (ARW) modelling system

M. Riechert1 and D. Meyer1

1 Independent scholar
DOI: 10.21105/joss.01468

Software
• Review
• Repository
• Archive

Submitted: 14 May 2019
Published: 09 September 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The Weather Research and Forecasting model (WRF1) model (Skamarock et al., 2019) is an
atmospheric modelling system widely used in operational forecasting and atmospheric research
(Powers et al., 2017). WRF is released as a free and open-source software and officially sup-
ported to run on Unix and Unix-like operating systems and on several hardware architectures
from single-core computers to multi-core supercomputers. Its current build system relies on
several bespoke hand-written Makefiles, and Perl and Shell scripts that have been supported
and extended during the many years of development.
The use of build script generation tools, that is, tools that generate files for native build
systems from specifications in a high-level language, rather than manually maintaining build
scripts for different environments and platforms, can be useful to reduce code duplication
and to minimize issues with code not building correctly (Hoffman, Cole, & Vines, 2009), to
make software more accessible to a broader audience, and the support less expensive (Heroux
& Willenbring, 2009). As such, a common build script generation tool is CMake. Today,
CMake is employed in several projects such as HDF5, EnergyPlus, and ParaView to build
modern software written in C, C++, and Fortran in high performance computing (HPC)
environments and, by CERN, to allow users to easily set-up and build several million lines of
C++ and Python code used in the offline software of the ATLAS experiment at the Large
Hadron Collider (LHC) (Elmsheuser, Krasznahorkay, Obreshkov, & Undrus, 2017).
WRF-CMake aims at helping model developers and end-users by adding CMake support to
the latest version of WRF and the WRF Processing System (WPS), while coexisting with
the existing build set-up. The main goals of WRF-CMake are to simplify the build process
involved in developing and building WRF and WPS, add support for automated testing using
continuous integration (CI), and the generation of pre-built binary releases for Linux, macOS,
and Windows thus allowing non-expert users to get started with their simulations in a few
minutes, or integrating WRF and WPS into other software (see, for example, the GIS4WRF
project (Meyer & Riechert, 2019)). The WRF-CMake project provides model developers,
code maintainers, and end-users wishing to build WRF and WPS on their system several
advantages such as robust incremental rebuilds, dependency analysis of Fortran code, flexible
library dependency discovery, automatic construction of compiler command-lines based on the
detected compiler, and integrated support for MPI and OpenMP. Furthermore, by using a
single language to control the build, CMake removes the need to write and support several
hand-written Makefiles, and Perl and Shell scripts. The current WRF-CMake set-up on GitHub
offers model developers and code maintainers an automated testing infrastructure (see Testing)
for Linux, macOS, and Windows, and allows end-users to directly download pre-built binaries

1By WRF, we specifically mean the Advanced Research WRF (ARW). The Non-hydrostatic Mesoscale Model
(NMM) dynamical core, WRF-DA, WRFPLUS, WRF-Chem, and WRF-Hydro are not currently supported in
WRF-CMake.

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

1

https://doi.org/10.21105/joss.01468
https://github.com/openjournals/joss-reviews/issues/1468
https://github.com/WRF-CMake/WRF
https://doi.org/10.5281/zenodo.3403343
http://creativecommons.org/licenses/by/4.0/
https://cmake.org/
https://www.hdfgroup.org/
https://energyplus.net/
https://www.paraview.org/
https://github.com/WRF-CMake/WRF
https://github.com/GIS4WRF/gis4wrf
https://doi.org/10.21105/joss.01468


for common configurations and architectures from the project’s website (experimental). WRF-
CMake is available as a free and open-source project on GitHub at https://github.com/
WRF-CMake and currently includes CMake support for the main Advanced Research WRF
(ARW) core and WPS.

Testing

A fundamental aspect of software development is testing. Ideally, model components should be
tested individually and under several testing methodologies (Feathers, 2004). Here, however,
as the WRF framework does not offer a way to unit test its components, we instead run
separate build and regression tests to evaluate the effects of our changes. While build tests
are used to check the absence of compilation errors, regression tests are used to estimate the
size of simulation errors resulting from our change.
Build tests are performed for all supported build variants (Table 1) using CI services at every
commit. As noted by Hodyss and Majumdar (2007), and Geer (2016), the high sensitivity to
initial conditions of dynamical systems, such as the ones used in weather models, can lead to
large differences in skill between any two forecasts. It is this high sensitivity to initial conditions
that can obscure the source of model error, whether this originates from a change in compiler
or architecture, an actual coding error, or indeed, the intrinsic nature of the dynamical system
employed.

Table 1: Build variants used in build and regression tests. Make: original WRF build system files,
CMake: this paper; Debug: compiler optimizations disabled, Release: enabled; serial: single
processor, dmpar: multiple with distributed memory (MPI), smpar: multiple with shared memory
(OpenMP), dm_sm: multiple with MPI and OpenMP.

Variant
OS Linux, macOS, Windows
Build tool Make, CMake
Build type Debug, Release
Mode serial, dmpar, smpar, dm_sm

As a result, the impact of our changes are evaluated using the range-normalized relative
percentage error (δx) and range-normalized root-mean-square percentage error (NRMSPE;
Appendix A). These are computed per domain for all grid points, and for all vertical levels.
The errors are assessed by (a) comparing the outputs of prognostic-variable outputs (Table
2) from WRF (Make) against those from WRF-CMake and (b) comparing the outputs for
all build variants (for both Make and CMake) against a reference build variant defined as
Linux/Make/Debug/serial.
These tests are then run for all supported build variants (Table 1) using the WRF-CMake
Automated Testing Suite (WATS), and a subset of namelists2 from the official WRF Testing
Framework, using CI services at major code changes (e.g. before merging pull requests), and
for 1 hour of simulation time, to constrain computing resources.
Here, we report summary results for the domain showing the greatest error (i.e. innermost;
domain 2) after simulating 60 minutes. Values of δx are aggregated for all quantities reported
in Table 2 and referred to as δ.

2See https://github.com/WRF-CMake/wats/tree/master/cases/wrf

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

2

https://github.com/WRF-CMake
https://github.com/WRF-CMake
https://github.com/WRF-CMake/WRF
https://github.com/WRF-CMake/WRF
https://github.com/WRF-CMake/WPS
https://github.com/WRF-CMake/wats
https://github.com/WRF-CMake/wats
https://github.com/wrf-model/WTF
https://github.com/wrf-model/WTF
https://github.com/WRF-CMake/wats/tree/master/cases/wrf
https://doi.org/10.21105/joss.01468


Table 2: WRF prognostic variables evaluated during regression tests.

Symbol Name Unit
p Air pressure Pa
ϕ Surface geopotential m2 s−2

θ Air potential temperature K
u Zonal component of wind velocity m s−1

v Meridional component of wind velocity m s−1

w Vertical component of wind velocity m s−1

At the start of the simulation, the NRMSPE between WRF (Make) and WRF-CMake is
zero (Appendix B, Figure 5), but small, when comparing WRF build variants (both Make
and CMake) against a reference variant (Linux/Make/Debug/serial; Appendix B, Figure
6), thus suggesting an expected variability of outputs when running WRF across different
platforms.
After 60 minutes (simulation time), WRF-CMake produces, on average, small values of δ,
with mean close to zero, and most of the error (99.8 %) between -0.05 and 0.05 % (Figure 1).
On Linux, the only build variants showing no error are for Debug/serial and Debug/dmpar
(Figure 1 and 2). For NRMSPE (Figure 2), values of w show to be the most sensitive,
however, the largest errors are shown for all components of wind velocity, on both, Linux and
macOS.
Differences, in particular for Release build variants, most likely arise from an inconsistent use
of compiler optimization options in WRF (Make) across its C and Fortran files, whereas in
WRF-CMake, such options are centrally and consistently applied. Given that Debug/serial
and Debug/dmpar show no error, we would expect the same to be true for the OpenMP
variants Debug/smpar and Debug/dm_sm. Further investigation is required to establish the
source of these differences.
When comparing both Make and CMake versions against the reference build variant (i.e.
Linux/Make/Debug/serial; Figure 3 and 4), the errors appear to be of equal, or greater,
magnitude than those shown when comparing WRF (Make) against WRF-CMake for both δ
(Figure 3) and NRMSPE (Figure 4), thus indicating that the variability across build variants
may be more important and may also be an inherent feature of WRF.
The choice of operating system has the greatest impact on both δ and NRMSPE (Figure 3 and
4) over compiler optimization strategies and build tool used. A change in build tool to CMake
appears to produce values of δ and NRMSPE consistent with those obtained from versions
of WRF built with the original build scripts3. The largest errors are shown for wind velocity
and, specifically for u and w. Larger values of δ and NRMSPE between operating systems
appear to be a general property of WRF (i.e. with/without CMake support) and should be
investigated further.

3Comparison on Windows is not made as Windows support is only available in WRF-CMake.

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

3

https://doi.org/10.21105/joss.01468


0.075 0.050 0.025 0.000 0.025 0.050 0.075
 in %

Linux/Debug/dmpar

Linux/Debug/dm_sm

Linux/Debug/serial

Linux/Debug/smpar

Linux/Release/dmpar

Linux/Release/dm_sm

Linux/Release/serial

Linux/Release/smpar

macOS/Debug/dmpar

macOS/Debug/dm_sm

macOS/Debug/serial

macOS/Debug/smpar

macOS/Release/dmpar

macOS/Release/dm_sm

macOS/Release/serial

macOS/Release/smpar

Tr
ia

l

-3.4 5.1

-4.2 3.1

-3.6 2.7

-3.6 2.7

-3.6 2.7

-3.6 2.7

-6.2 6.2

-4.2 3.4

-1.3 1.3

Figure 1: WRF (Make) vs WRF-CMake: extended box plots of range-normalized relative percentage
errors (δ) for the domain with highest errors only (domain 2) after 60 minutes (simulation time).
Extended boxplots show minimum, maximum, median, and percentiles at [99.9, 99, 75, 25, 5, 1, 0.1].

p u v w
Quantity

Linux/Debug/dmpar

Linux/Debug/dm_sm

Linux/Debug/serial

Linux/Debug/smpar

Linux/Release/dmpar

Linux/Release/dm_sm

Linux/Release/serial

Linux/Release/smpar

macOS/Debug/dmpar

macOS/Debug/dm_sm

macOS/Debug/serial

macOS/Debug/smpar

macOS/Release/dmpar

macOS/Release/dm_sm

macOS/Release/serial

macOS/Release/smpar

Tr
ia

l

0 0 0 0 0 0

0.00043 5.82e-05 0.00128 0.00569 0.00444 0.0246

0 0 0 0 0 0

0.000338 5.28e-05 0.000889 0.00196 0.00186 0.0205

0.000308 4.34e-05 0.000834 0.00178 0.00156 0.0193

0.000387 4.52e-05 0.00129 0.00647 0.00438 0.0196

0.000308 4.34e-05 0.000834 0.00178 0.00156 0.0193

0.000308 4.34e-05 0.000834 0.00178 0.00156 0.0193

0 0 0 0 0 0

0.000455 5.9e-05 0.00139 0.00682 0.00494 0.0246

0 0 0 0 0 0

0.000299 4.8e-05 0.000852 0.0019 0.00167 0.019

0 0 0 0 0 0

0.000232 1.15e-05 0.000828 0.00511 0.00405 0.00318

0 0 0 0 0 0

0 0 0 0 0 0

0.000

0.005

0.010

0.015

0.020

N
R

M
SP

E 
in

 %

Figure 2: WRF (Make) vs WRF-CMake: range-normalized root mean-square percentage error (NRM-
SPE) for the domain with highest errors only (domain 2) after 60 minutes (simulation time).

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

4

https://doi.org/10.21105/joss.01468


0.6 0.4 0.2 0.0 0.2 0.4 0.6
 in %

Linux/CMake/Debug/dmpar
Linux/CMake/Debug/dm_sm

Linux/CMake/Debug/serial
Linux/CMake/Debug/smpar

Linux/CMake/Release/dmpar
Linux/CMake/Release/dm_sm

Linux/CMake/Release/serial
Linux/CMake/Release/smpar

Linux/Make/Debug/dmpar
Linux/Make/Debug/dm_sm
Linux/Make/Debug/smpar

Linux/Make/Release/dmpar
Linux/Make/Release/dm_sm

Linux/Make/Release/serial
Linux/Make/Release/smpar

macOS/CMake/Debug/dmpar
macOS/CMake/Debug/dm_sm

macOS/CMake/Debug/serial
macOS/CMake/Debug/smpar

macOS/CMake/Release/dmpar
macOS/CMake/Release/dm_sm

macOS/CMake/Release/serial
macOS/CMake/Release/smpar

macOS/Make/Debug/dmpar
macOS/Make/Debug/dm_sm

macOS/Make/Debug/serial
macOS/Make/Debug/smpar

macOS/Make/Release/dmpar
macOS/Make/Release/dm_sm

macOS/Make/Release/serial
macOS/Make/Release/smpar

Windows/CMake/Debug/dmpar
Windows/CMake/Debug/dm_sm

Windows/CMake/Debug/serial
Windows/CMake/Debug/smpar

Windows/CMake/Release/dmpar
Windows/CMake/Release/dm_sm

Windows/CMake/Release/serial
Windows/CMake/Release/smpar

Tr
ia

l

-4.0 4.6

-4.2 4.8
-3.9 2.8
-3.9 2.8
-3.9 2.8
-3.9 2.8

-3.9 4.1
-4.3 4.7
-3.9 2.8
-3.9 2.8
-3.9 2.8
-3.9 2.8

-20.2 15.2
-20.2 15.2
-20.2 15.2
-20.2 15.2
-31.3 21.8
-31.3 21.8
-31.3 21.8
-31.3 21.8
-20.2 15.2
-20.2 15.2
-20.2 15.2
-20.2 15.2
-31.3 21.8
-31.3 21.8
-31.3 21.8
-31.3 21.8
-17.9 39.5
-17.9 39.5
-17.9 39.5
-17.9 39.5
-17.9 39.5
-17.9 39.5
-17.9 39.5
-17.9 39.5

Figure 3: WRF (Make and CMake) vs reference build variant: extended box plots of range-normalized
relative percentage errors (δ) against the reference build variant (Linux/Make/Debug/serial) for the
domain with highest errors only (domain 2) after 60 minutes (simulation time). Extended boxplots
show minimum, maximum, median, and percentiles at [99.9, 99, 75, 25, 5, 1, 0.1].

p u v w
Quantity

Linux/CMake/Debug/dmpar
Linux/CMake/Debug/dm_sm

Linux/CMake/Debug/serial
Linux/CMake/Debug/smpar

Linux/CMake/Release/dmpar
Linux/CMake/Release/dm_sm

Linux/CMake/Release/serial
Linux/CMake/Release/smpar

Linux/Make/Debug/dmpar
Linux/Make/Debug/dm_sm
Linux/Make/Debug/smpar

Linux/Make/Release/dmpar
Linux/Make/Release/dm_sm

Linux/Make/Release/serial
Linux/Make/Release/smpar

macOS/CMake/Debug/dmpar
macOS/CMake/Debug/dm_sm

macOS/CMake/Debug/serial
macOS/CMake/Debug/smpar

macOS/CMake/Release/dmpar
macOS/CMake/Release/dm_sm

macOS/CMake/Release/serial
macOS/CMake/Release/smpar

macOS/Make/Debug/dmpar
macOS/Make/Debug/dm_sm

macOS/Make/Debug/serial
macOS/Make/Debug/smpar

macOS/Make/Release/dmpar
macOS/Make/Release/dm_sm

macOS/Make/Release/serial
macOS/Make/Release/smpar

Windows/CMake/Debug/dmpar
Windows/CMake/Debug/dm_sm

Windows/CMake/Debug/serial
Windows/CMake/Debug/smpar

Windows/CMake/Release/dmpar
Windows/CMake/Release/dm_sm

Windows/CMake/Release/serial
Windows/CMake/Release/smpar

Tr
ia

l

0 0 0 0 0 0
0.000435 5.49e-05 0.00114 0.00479 0.00386 0.0219

0 0 0 0 0 0
0.0003 4.14e-05 0.00101 0.00203 0.00174 0.0192

0.000332 5e-05 0.000961 0.00194 0.00153 0.0188
0.000398 5.14e-05 0.00127 0.00571 0.00381 0.019
0.000332 5e-05 0.000961 0.00194 0.00153 0.0188
0.000332 5e-05 0.000961 0.00194 0.00153 0.0188

0 0 0 0 0 0
0.000387 4.44e-05 0.00113 0.00455 0.00335 0.0182
0.00035 4.99e-05 0.000927 0.00203 0.00191 0.0212

0.000339 5.08e-05 0.00103 0.00208 0.0018 0.0201
0.000414 5.25e-05 0.00149 0.00672 0.0051 0.0204
0.000339 5.08e-05 0.00103 0.00208 0.0018 0.0201
0.000339 5.08e-05 0.00103 0.00208 0.0018 0.0201
0.000921 0.000328 0.00479 0.0346 0.0789 0.1
0.000912 0.000327 0.00477 0.0348 0.079 0.0993
0.000921 0.000328 0.00479 0.0346 0.0789 0.1
0.000914 0.000328 0.00477 0.0346 0.0789 0.0996
0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.000914 0.000344 0.00502 0.0362 0.101 0.109
0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.000921 0.000328 0.00479 0.0346 0.0789 0.1
0.000934 0.000328 0.00478 0.0347 0.079 0.101
0.000921 0.000328 0.00479 0.0346 0.0789 0.1
0.000913 0.000328 0.00478 0.0346 0.0789 0.0999
0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.00091 0.000344 0.00503 0.0363 0.101 0.109

0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.000909 0.000344 0.00497 0.0358 0.101 0.109
0.000872 0.000315 0.00446 0.0308 0.0916 0.103
0.00087 0.000314 0.00454 0.0313 0.0917 0.103

0.000872 0.000315 0.00446 0.0308 0.0916 0.103
0.000861 0.000314 0.00447 0.0309 0.0916 0.103
0.000874 0.000315 0.00447 0.0309 0.0916 0.103
0.000863 0.000315 0.00449 0.0308 0.0916 0.103
0.000874 0.000315 0.00447 0.0309 0.0916 0.103
0.000867 0.000315 0.00448 0.0308 0.0916 0.103

0.00

0.02

0.04

0.06

0.08

0.10

N
R

M
SP

E 
in

 %

Figure 4: WRF (Make and CMake) vs reference build variant: range-normalized root mean-square
percentage errors (NRMSPE) against the reference build variant (Linux/Make/Debug/serial) for
the domain with highest errors only (domain 2) after 60 minutes (simulation time).

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

5

https://doi.org/10.21105/joss.01468


Concluding remarks

We introduce WRF-CMake as a modern replacement for the existing WRF build system. Its
main goals are to simplify the build process involved in developing and building WRF and
WPS, add support for automated testing using CI, and automate the generation of pre-built
binary releases for Linux, macOS, and Windows. Results from regression tests indicate that,
when evaluating outputs of prognostic variables, errors between WRF and WRF-CMake are
generally small, or smaller, then errors originating from a change in optimization strategy
(e.g. Debug, Release) or a change in platform (e.g. Linux to macOS). These larger errors
appear to be a general property of WRF (i.e. with/without CMake support) and should be
investigated further. Depending on feedback and general uptake by the community, future
work may involve adding support for WRF-DA, WRFPLUS, WRF-Chem, and WRF-Hydro.

Acknowledgements

We thank A. J. Geer at the European Centre for Medium-Range Weather Forecasts (ECMWF)
for the useful discussion and feedback concerning the topic of error growth in dynamical
systems. We also thank the reviewers I. Beekman and A. Hilboll for their time and useful
contributions to both paper and software.

Appendix A Statistics

The vector of range-normalized relative percentage error (δx) between two vectors x1 and x2

of paired quantities x1 and x2 is defined as:

δx :=
x1 − x2

Rx1

× 100 %, (1)

where Rx1
is the range of x1.

Similarly, the range-normalized root-mean-square percentage error (NRMSPE) is defined as:

NRMSPE :=
RMSE

Rx1

× 100 %, (2)

with the root-mean-square-error (RMSE) defined as:

RMSE :=

√∑N
i=1(x1,i − x2,i)2

N
, (3)

and N is the size of the vector.

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

6

https://doi.org/10.21105/joss.01468


Appendix B Supplementary figures

p u v w
Quantity

Linux/Debug/dmpar

Linux/Debug/dm_sm

Linux/Debug/serial

Linux/Debug/smpar

Linux/Release/dmpar

Linux/Release/dm_sm

Linux/Release/serial

Linux/Release/smpar

macOS/Debug/dmpar

macOS/Debug/dm_sm

macOS/Debug/serial

macOS/Debug/smpar

macOS/Release/dmpar

macOS/Release/dm_sm

macOS/Release/serial

macOS/Release/smpar

Tr
ia

l

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.08

0.04

0.00

0.04

0.08

N
R

M
SP

E 
in

 %

Figure 5: WRF (Make) vs WRF-CMake: range-normalized root mean-square percentage error (NRM-
SPE) at 0 minutes (simulation time).

p u v w
Quantity

Linux/CMake/Debug/dmpar
Linux/CMake/Debug/dm_sm

Linux/CMake/Debug/serial
Linux/CMake/Debug/smpar

Linux/CMake/Release/dmpar
Linux/CMake/Release/dm_sm

Linux/CMake/Release/serial
Linux/CMake/Release/smpar

Linux/Make/Debug/dmpar
Linux/Make/Debug/dm_sm
Linux/Make/Debug/smpar

Linux/Make/Release/dmpar
Linux/Make/Release/dm_sm

Linux/Make/Release/serial
Linux/Make/Release/smpar

macOS/CMake/Debug/dmpar
macOS/CMake/Debug/dm_sm

macOS/CMake/Debug/serial
macOS/CMake/Debug/smpar

macOS/CMake/Release/dmpar
macOS/CMake/Release/dm_sm

macOS/CMake/Release/serial
macOS/CMake/Release/smpar

macOS/Make/Debug/dmpar
macOS/Make/Debug/dm_sm

macOS/Make/Debug/serial
macOS/Make/Debug/smpar

macOS/Make/Release/dmpar
macOS/Make/Release/dm_sm

macOS/Make/Release/serial
macOS/Make/Release/smpar

Windows/CMake/Debug/dmpar
Windows/CMake/Debug/dm_sm

Windows/CMake/Debug/serial
Windows/CMake/Debug/smpar

Windows/CMake/Release/dmpar
Windows/CMake/Release/dm_sm

Windows/CMake/Release/serial
Windows/CMake/Release/smpar

Tr
ia

l

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.35e-05 3e-06 4.94e-06 7.79e-06 7.43e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06
2.2e-05 3e-06 4.94e-06 7.77e-06 7.44e-06 6.15e-06

0.000000

0.000004

0.000008

0.000012

0.000016

0.000020

N
R

M
SP

E 
in

 %

Figure 6: WRF (Make and CMake) vs reference build variant: range-normalized root mean-square
percentage errors (NRMSPE) against the reference build variant (Linux/Make/Debug/serial) for
the domain with highest errors only (domain 2) at 0 minutes (simulation time). Extended boxplots
show minimum, maximum, median, and percentiles at [99.9, 99, 75, 25, 5, 1, 0.1].

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

7

https://doi.org/10.21105/joss.01468


References

Elmsheuser, J., Krasznahorkay, A., Obreshkov, E., & Undrus, A. (2017). Large scale software
building with CMake in ATLAS. Journal of Physics: Conference Series, 898, 072010. doi:10.
1088/1742-6596/898/7/072010
Feathers, M. (2004). Working Effectively with Legacy Code (p. 456). New Jersey: Prentice
Hall.
Geer, A. J. (2016). Significance of changes in medium-range forecast scores. Tellus A:
Dynamic Meteorology and Oceanography, 68(1), 30229. doi:10.3402/tellusa.v68.30229
Heroux, M. A., & Willenbring, J. M. (2009). Barely sufficient software engineering: 10
practices to improve your CSE software. In 2009 ICSE workshop on software engineering for
computational science and engineering. IEEE. doi:10.1109/secse.2009.5069157
Hodyss, D., & Majumdar, S. J. (2007). The contamination of ‘data impact’ in global models
by rapidly growing mesoscale instabilities. Quarterly Journal of the Royal Meteorological
Society, 133(628), 1865–1875. doi:10.1002/qj.157
Hoffman, B., Cole, D., & Vines, J. (2009). Software process for rapid development of HPC
software using CMake. In 2009 DoD high performance computing modernization program
users group conference. IEEE. doi:10.1109/hpcmp-ugc.2009.62
Meyer, D., & Riechert, M. (2019). Open source QGIS toolkit for the advanced research
WRF modelling system. Environmental Modelling & Software, 112, 166–178. doi:10.1016/j.
envsoft.2018.10.018
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J.
L., et al. (2017). The Weather Research and Forecasting Model: Overview, System Efforts,
and Future Directions. Bulletin of the American Meteorological Society, 98(8), 1717–1737.
doi:10.1175/BAMS-D-15-00308.1
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., et
al. (2019). A description of the advanced research wrf model version 4 (p. 145). NCAR
Technical Note NCAR/TN-556+STR. doi:10.5065/1dfh-6p97

Riechert et al., (2019). WRF-CMake: integrating CMake support into the Advanced Research WRF (ARW) modelling system. Journal of Open
Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468

8

https://doi.org/10.1088/1742-6596/898/7/072010
https://doi.org/10.1088/1742-6596/898/7/072010
https://doi.org/10.3402/tellusa.v68.30229
https://doi.org/10.1109/secse.2009.5069157
https://doi.org/10.1002/qj.157
https://doi.org/10.1109/hpcmp-ugc.2009.62
https://doi.org/10.1016/j.envsoft.2018.10.018
https://doi.org/10.1016/j.envsoft.2018.10.018
https://doi.org/10.1175/BAMS-D-15-00308.1
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.21105/joss.01468

	Summary
	Testing
	Concluding remarks
	Acknowledgements
	Appendix A Statistics
	Appendix B Supplementary figures
	References

