
OrpailleCC: a Library for Data Stream Analysis on
Embedded Systems
Martin Khannouz1, Bo Li1, and Tristan Glatard1

1 Department of Computer Science and Software Engineering, Concordia University, Montreal,
Canada

DOI: 10.21105/joss.01485

Software
• Review
• Repository
• Archive

Submitted: 29 March 2019
Published: 25 July 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The Internet of Things could benefit in several ways from mining data streams on connected
objects rather than in the cloud. In particular, limiting network communication with cloud
services would improve user privacy and reduce energy consumption in connected devices.
Besides, applications could leverage the computing power of connected objects for improved
scalability.
OrpailleCC provides a consistent collection of data stream algorithms developed to be deployed
on embedded devices. Its main objective is to support research on data stream mining for
connected objects, by facilitating the comparison and benchmarking of algorithms in a con-
sistent framework. It also enables programmers of embedded systems to use out-of-the-box
algorithms with an efficient implementation. To the best of our knowledge, existing libraries
of stream mining algorithms cannot be used on connected objects due to their resource con-
sumption or assumptions about the target system (e.g., existence of a malloc function).
Nevertheless, for more powerful devices such as desktop computers, Java frameworks such as
Massive Online Analysis (Bifet, Holmes, Kirkby, & Pfahringer, 2010) and WEKA (Hall et al.,
2009) achieve similar goals as OrpailleCC.
OrpailleCC targets the classes of problems discussed by Kejariwal, Kulkarni, & Ramasamy
(2015), in particular Sampling and Filtering. Sampling covers algorithms that build a rep-
resentative sample of a data stream. OrpailleCC implements the reservoir sampling (Vitter,
1985) and one variant, the chained reservoir sampling (Babcock, Datar, & Motwani, 2002).
Filtering algorithms remove the stream elements that do not belong to a specific set. Or-
pailleCC implements the Bloom Filter (Bloom, 1970) and the Cuckoo Filter (Fan, Andersen,
Kaminsky, & Mitzenmacher, 2014), two well-tested algorithms that address this problem.
In addition to Sampling and Filtering, OrpailleCC provides algorithms for stream Classification
and for stream Compression. The Micro-Cluster Nearest Neighbour algorithm (Tennant, Stahl,
Rana, & Gomes, 2017) is based on the k-nearest neighbor to classify a data stream while de-
tecting concept drifts. The Lightweight Temporal Compression (Schoellhammer, Greenstein,
Osterweil, Wimbrow, & Estrin, 2004) and a multi-dimensional variant (Li, Sarbishei, Nourani,
& Glatard, 2018) are two methods to compress data streams.
All implementations rely as little as possible on functions provided by the operating system,
for instance malloc, since such functions are typically not available on embedded systems.
When algorithms cannot be implemented without such functions, the library uses template
parameters to request the required functions from the user. All algorithms are developed for
FreeRTOS (Amazon Web Services, n.d.), a free real-time operating system used in embedded
systems, but they should work on any micro-controller with a C++11 compiler. The C++11
programming language was chosen for its performance as well as its popularity in the field.
All methods are tested and tests are run through Travis-CI.

Khannouz et al., (2019). OrpailleCC: a Library for Data Stream Analysis on Embedded Systems. Journal of Open Source Software, 4(39),
1485. https://doi.org/10.21105/joss.01485

1

https://doi.org/10.21105/joss.01485
https://github.com/openjournals/joss-reviews/issues/1485
https://github.com/big-data-lab-team/OrpailleCC
https://doi.org/10.5281/zenodo.3266109
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01485


In the future, we plan to extend the library with other reliable algorithms to widely cover as
many common problems as possible. We also plan to use it as a basis to design new stream
classification methods. External contributions are, of course, most welcome.

References

Amazon Web Services. (n.d.). FreeRTOS. https://www.freertos.org/.
Babcock, B., Datar, M., & Motwani, R. (2002). Sampling from a moving window over
streaming data. In Proceedings of the thirteenth annual Association for Computing Machinery-
SIAM Symposium on Discrete algorithms (pp. 633–634). Society for Industrial; Applied
Mathematics.
Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive Online Analysis.
Journal of Machine Learning Research, 11(May), 1601–1604.
Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7), 422–426. doi:10.1145/362686.362692
Fan, B., Andersen, D. G., Kaminsky, M., & Mitzenmacher, M. D. (2014). Cuckoo filter. In
Proceedings of the 10th ACM International on Conference on emerging Networking Experi-
ments and Technologies - CoNEXT 14. ACM Press. doi:10.1145/2674005.2674994
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).
The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10. doi:10.
1145/1656274.1656278
Kejariwal, A., Kulkarni, S., & Ramasamy, K. (2015). Real time analytics. Proceedings of the
VLDB Endowment, 8(12), 2040–2041. doi:10.14778/2824032.2824132
Li, B., Sarbishei, O., Nourani, H., & Glatard, T. (2018). A multi-dimensional extension of the
Lightweight Temporal Compression method. In 2018 IEEE International Conference on Big
Data (big data). IEEE. doi:10.1109/bigdata.2018.8621946
Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M., & Estrin, D. (2004).
Lightweight Temporal Compression of Microclimate Datasets [wireless sensor networks]. In
29th annual IEEE International Conference on Local Computer Networks. IEEE (Comput.
Soc.). doi:10.1109/lcn.2004.72
Tennant, M., Stahl, F., Rana, O., & Gomes, J. B. (2017). Scalable real-time classification
of data streams with concept drift. Future Generation Computer Systems, 75, 187–199.
doi:10.1016/j.future.2017.03.026
Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1), 37–57. doi:10.1145/3147.3165

Khannouz et al., (2019). OrpailleCC: a Library for Data Stream Analysis on Embedded Systems. Journal of Open Source Software, 4(39),
1485. https://doi.org/10.21105/joss.01485

2

https://www.freertos.org/
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.14778/2824032.2824132
https://doi.org/10.1109/bigdata.2018.8621946
https://doi.org/10.1109/lcn.2004.72
https://doi.org/10.1016/j.future.2017.03.026
https://doi.org/10.1145/3147.3165
https://doi.org/10.21105/joss.01485

	Summary
	References

