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Summary

The Internet of Things could benefit in several ways from mining data streams on connected
objects rather than in the cloud. In particular, limiting network communication with cloud
services would improve user privacy and reduce energy consumption in connected devices.
Besides, applications could leverage the computing power of connected objects for improved
scalability.
OrpailleCC provides a consistent collection of data stream algorithms developed to be deployed
on embedded devices. Its main objective is to support research on data stream mining for
connected objects, by facilitating the comparison and benchmarking of algorithms in a con-
sistent framework. It also enables programmers of embedded systems to use out-of-the-box
algorithms with an efficient implementation. To the best of our knowledge, existing libraries
of stream mining algorithms cannot be used on connected objects due to their resource con-
sumption or assumptions about the target system (e.g., existence of a malloc function).
Nevertheless, for more powerful devices such as desktop computers, Java frameworks such as
Massive Online Analysis (Bifet, Holmes, Kirkby, & Pfahringer, 2010) and WEKA (Hall et al.,
2009) achieve similar goals as OrpailleCC.
OrpailleCC targets the classes of problems discussed by Kejariwal, Kulkarni, & Ramasamy
(2015), in particular Sampling and Filtering. Sampling covers algorithms that build a rep-
resentative sample of a data stream. OrpailleCC implements the reservoir sampling (Vitter,
1985) and one variant, the chained reservoir sampling (Babcock, Datar, & Motwani, 2002).
Filtering algorithms remove the stream elements that do not belong to a specific set. Or-
pailleCC implements the Bloom Filter (Bloom, 1970) and the Cuckoo Filter (Fan, Andersen,
Kaminsky, & Mitzenmacher, 2014), two well-tested algorithms that address this problem.
In addition to Sampling and Filtering, OrpailleCC provides algorithms for stream Classification
and for stream Compression. The Micro-Cluster Nearest Neighbour algorithm (Tennant, Stahl,
Rana, & Gomes, 2017) is based on the k-nearest neighbor to classify a data stream while de-
tecting concept drifts. The Lightweight Temporal Compression (Schoellhammer, Greenstein,
Osterweil, Wimbrow, & Estrin, 2004) and a multi-dimensional variant (Li, Sarbishei, Nourani,
& Glatard, 2018) are two methods to compress data streams.
All implementations rely as little as possible on functions provided by the operating system,
for instance malloc, since such functions are typically not available on embedded systems.
When algorithms cannot be implemented without such functions, the library uses template
parameters to request the required functions from the user. All algorithms are developed for
FreeRTOS (Amazon Web Services, n.d.), a free real-time operating system used in embedded
systems, but they should work on any micro-controller with a C++11 compiler. The C++11
programming language was chosen for its performance as well as its popularity in the field.
All methods are tested and tests are run through Travis-CI.
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In the future, we plan to extend the library with other reliable algorithms to widely cover as
many common problems as possible. We also plan to use it as a basis to design new stream
classification methods. External contributions are, of course, most welcome.
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