
cppduals: a nestable vectorized templated dual number
library for C++11
Michael Tesch1

1 Department of Chemistry, Technische Universität München, 85747 Garching, Germany
DOI: 10.21105/joss.01487

Software
• Review
• Repository
• Archive

Submitted: 13 May 2019
Published: 05 November 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Mathematical algorithms in the field of optimization often require the simultaneous com-
putation of a function and its derivative. The derivative of many functions can be found
automatically, a process referred to as automatic differentiation. Dual numbers, close rela-
tives of the complex numbers, are of particular use in automatic differentiation. This library
provides an extremely fast implementation of dual numbers for C++, duals::dual<>, which,
when replacing scalar types, can be used to automatically calculate a derivative.
A real function’s value can be made to carry the derivative of the function with respect to
a real argument by replacing the real argument with a dual number having a unit dual part.
This property is recursive: replacing the real part of a dual number with more dual numbers
results in the dual part’s dual part holding the function’s second derivative. The dual<> type
in this library allows this nesting (although we note here that it may not be the fastest solution
for calculating higher order derivatives.)
There are a large number of automatic differentiation libraries and classes for C++: adolc
(Walther, 2012), FAD (Aubert & Di Césaré, 2002), autodiff (Leal, 2019), ceres (Agarwal,
Mierle, & others, n.d.), AuDi (Izzo, Biscani, Sánchez, Müller, & Heddes, 2019), to name a
few, with another 30-some listed at (autodiff.org Bücker & Hovland, 2019). But there were
no simple single-file stand-alone header libraries that were explicitly vectorized. Cppduals can
be copied and used as a single header file duals/dual with no dependencies other than the
standard library, and the vectorization support is contained in a small number of additional
auxiliary files. The interface generally follows the conventions of the C++11 standard library’s
std::complex type, and has very liberal licensing.
In order to fully utilize the computing resources of modern CPUs it is often necessary to
use their special data-parallel capabilities. However, compilers often struggle to find the best
sequence of instructions to achieve maximum performance due to difficulties in automatically
detecting parallel data operations in programs and then mapping those parallel operations onto
the CPU’s data-parallel instructions. Some intervention from the programmer to exploit these
special data-parallel instructions, combined with cache-optimized algorithms, can improve
program execution speed significantly. This is done by cppduals through providing template
specializations for selected C++ data types.
Template specializations that map the dual arithmetic directly to vector machine language
are provided for the types typically used to calculate first-order derivatives: dual<float>
, dual<double>, std::complex<dual<float>>, and std::complex<dual<double>>.
These types and their algebras are expressed in hand-coded assembly for use with the Eigen
(Guennebaud, Jacob, & others, 2010) matrix library. The vector operations for the dual<>
type are then picked up automatically by Eigen’s cache-optimized algorithms. The integration
lets us achieve extremely fast performance for automatic forward, first-order differentiation of
matrix expressions. Furthermore, by piggy-backing on Eigen’s algorithms, the library inherits

Tesch, (2019). cppduals: a nestable vectorized templated dual number library for C++11. Journal of Open Source Software, 4(43), 1487.
https://doi.org/10.21105/joss.01487

1

https://doi.org/10.21105/joss.01487
https://github.com/openjournals/joss-reviews/issues/1487
https://gitlab.com/tesch1/cppduals
https://doi.org/10.5281/zenodo.3528307
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01487


future improvements and adaptations to other hardware platforms. The vector specializations
are currently available for the x86_64 SSE and AVX instruction sets, though support for other
vector machine architectures (such as GPUs) can easily be added.

Mathematics

A dual number has a real part and a dual part, the dual part is multiplied by the dual unit ϵ,
with the property that ϵ2 = 0. Formally the dual space, D = {x = a+ bϵ | a, b ∈ R, ϵ2 = 0}.
The property can be used to differentiate functions of real values by expanding f(x) as its
Taylor series at a:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + ...

Setting x = a+ bϵ in this expansion gives

f(a+ bϵ) = f(a) + f ′(a)(bϵ) +
f ′′(a)

2!
(bϵ)2 +

f ′′′(a)

3!
(bϵ)3 + ...

= f(a) + f ′(a)(bϵ)

Because the ϵ2 terms are zero, the Taylor expansion truncates after the f ′ term. Thus to
evaluate f ′(a): set x = a + bϵ with b = 1, and take the dual part of the evaluated function
Du(f(x)).
A matrix representation of the dual numbers is

(
a b
0 a

)
. This form can be used to calculate

Fréchet derivatives of matrix functions DBf(A) by doubling the size of the calculation and
embedding the parameter (A) and with-regard-to parts (B) into this doubled matrix, zeroing
the lower left quadrant: DBf(A) = C where f

(
A B
0 A

)
=

(
F C
0 F

)
.

Benchmarks

The above blocking method of computing matrix function derivatives requires twice as much
memory as using dual numbers, and furthermore does not take advantage of the relative
sparsity of dual number arithmetic. However, the blocking method does permit the use
of highly optimized complex-valued BLAS libraries, which are often significantly faster than
“regularly” compiled code, being hand-tuned for a specific CPU architecture and memory
heirarchy. We compared using dual<> to calculate the derivative of the matrix-matrix product
with using the blocking method implemented with OpenBLAS (Wang, Zhang, Zhang, & Yi,
2013). All benchmarks were performed single-threaded on an Intel(R) Core(TM) i7-7700
CPU @ 3.60GHz running Fedora 30, using Eigen v3.3.7, OpenBLAS v0.3.6, and compiled
using clang v8.0.0.
The cppduals vectorized type reduced the time of a 32x32 matrix-multiplication derivative by
40% over the 2Nx2N (in this case 64x64) multiplication performed by OpenBLAS (even with
a suspected performance bug in Eigen’s GEMM algorithm, described below). In the current
implementation, this advantage diminishes as the matrix size grows, as shown in Figure 1

Tesch, (2019). cppduals: a nestable vectorized templated dual number library for C++11. Journal of Open Source Software, 4(43), 1487.
https://doi.org/10.21105/joss.01487

2

https://doi.org/10.21105/joss.01487


,
we suspect this is due to a bug in Eigen’s cache optimization for non-scalar valued matrix-
matrix multiplication. We note that the Eigen scalar-valued matrix multiplications are
roughly as fast as OpenBLAS, demonstrating the validity of Eigen’s approach to optimization,
but complex-valued multiplications take roughly twice as much time as their OpenBLAS
equivalents, indicating a performance bug in Eigen’s current optimizations, though only for
complex-valued (and consequently, dual-valued) matrices.
We hope to achieve further speed improvements with tuning and more debugging of the
integration with Eigen. In general, dual-valued operations should be marginally faster than
corresponding complex-valued operations, as they require slightly fewer floating point opera-
tions.

Usage

Cppduals is used in the SpinDrops (Tesch, Glaser, & Glaser, 2019) NMR and quantum com-
puting software for optimization of pulse quality functions.

Acknowledgments

We acknowledge first of all the Eigen project and its contributors, upon which the vectorization
was based. Some funding was provided by the TUM School of Education.

References

Agarwal, S., Mierle, K., & others. (n.d.). Ceres solver. http://ceres-solver.org.
Aubert, P., & Di Césaré, N. (2002). Expression templates and forward mode automatic
differentiation. In G. Corliss, C. Faure, A. Griewank, L. Hascoët, & U. Naumann (Eds.),
Automatic differentiation of algorithms: From simulation to optimization, Computer and
information science (pp. 311–315). New York, NY: Springer. doi:10.1007/978-1-4613-0075-5
Bücker, M., & Hovland, P. (2019). Autodiff.org. http://www.autodiff.org.
Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. http://eigen.tuxfamily.org.
Izzo, D., Biscani, F., Sánchez, C., Müller, J., & Heddes, M. (2019, May). Darioizzo/audi:
Update third party dependencies. Zenodo. doi:10.5281/zenodo.2677671
Leal, A. (2019). Autodiff. https://github.com/autodiff/autodiff.
Tesch, M., Glaser, N., & Glaser, S. J. (2019). SpinDrops 2.0. https://spindrops.org/.

Tesch, (2019). cppduals: a nestable vectorized templated dual number library for C++11. Journal of Open Source Software, 4(43), 1487.
https://doi.org/10.21105/joss.01487

3

http://ceres-solver.org
https://doi.org/10.1007/978-1-4613-0075-5
http://www.autodiff.org
http://eigen.tuxfamily.org
https://doi.org/10.5281/zenodo.2677671
https://github.com/autodiff/autodiff
https://spindrops.org/
https://doi.org/10.21105/joss.01487


Walther, A. (2012). Getting started with ADOL-C. In U. Naumann & O. Schenk (Eds.),
Combinatorial scientific computing. Chapman-Hall CRC Computational Science.
Wang, Q., Zhang, X., Zhang, Y., & Yi, Q. (2013). AUGEM: Automatically generate high
performance dense linear algebra kernels on X86 CPUs. In Proceedings of the international
conference for high performance computing, networking, storage and analysis (SC13) (pp.
1–12). Denver, Colorado: ACM Press. doi:10.1145/2503210.2503219

Tesch, (2019). cppduals: a nestable vectorized templated dual number library for C++11. Journal of Open Source Software, 4(43), 1487.
https://doi.org/10.21105/joss.01487

4

https://doi.org/10.1145/2503210.2503219
https://doi.org/10.21105/joss.01487

	Summary
	Mathematics
	Benchmarks
	Usage
	Acknowledgments
	References

