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Summary

hopit is an open source software library written in the R (R-Core-Team, 2018) and C++
(Bates & Eddelbuettel, 2013; Eddelbuettel & François, 2011) programming languages. The
hopit package provides versatile methods for fitting and analyzing ordered response data in
the context of heterogeneity in self reporting behavior.
The ordered response data classify a measure of interest into ordered categories collected
during a survey. For example, if the dependent variable is a happiness rating, then a respondent
typically answers a question such as: “Taking all things together, would you say you are … ?;
and then selects from response options such as:”very happy“,”pretty happy“,”not too happy“,
and”very unhappy” (Liao, Fu, & Yi, 2005). Similarly, if interviewees are asked to evaluate
their health in general (e.g., “Would you say your health is … ?”), they may choose among
several categories, such as “very good”, “good”, “fair”, “bad”, and “very bad” (Jürges, 2007;
King, Murray, Salomon, & Tandon, 2004; Oksuzyan, Dańko, Caputo, Jasilionis, & Shkolnikov,
2019; Rebelo & Pereira, 2014). In political science, a respondent may be asked for an opinion
about recent legislation (e.g. “Rate your feelings about the proposed legislation.”) and asked
to choose among categories like “strongly oppose”, “mildly oppose”, “indifferent”, “mildly
support”, and “strongly support” (Greene & Hensher, 2010). It is easy to imagine other
multi-level ordinal variables that might be used during a survey and to which the methodology
described below could be applied.
In practice, it is assumed that when responding to a survey question about their general
happiness, health, feelings, attitudes or other status, participants are assessing their true value
of this unobserved continuous variable, and project it onto the discrete scale provided. The
thresholds that individuals use to categorize their true status by selecting a specific response
option may be affected by the reference group chosen, their earlier life experiences, and cross-
cultural differences in using scales. Thus, the responses of individuals may differ depending on
their gender, age, cultural background, education, and personality traits; among other factors.
From the perspective of reporting behavior modeling, one of the main tasks researchers face is
to compute this continuous estimate of the underlying, latent measures of individuals based on
several specific characteristics of the responses considered (e.g., health variables or happiness
variables), and to account for variations in reporting across socio-demographic and cultural
groups. More specifically, to build a latent, underlying measure, a generalized hierarchical
ordered threshold model is fitted that regresses the reported status/attitude/feeling on two
sets of independent variables (Boes & Winkelmann, 2006; Greene, Harris, Hollingsworth, &
Weterings, 2014). When the dependent reported ordered variable is self-rated health status,
then the first set of variables – i.e., health variables – assess specific aspects of individuals’
health, such as measures of chronic conditions, mobility, difficulties with a range of daily
activities, grip strength, anthropometric characteristics, and lifestyle behaviors. Using the
second set of independent variables (threshold variables), the model also adjusts for differences
across socio-demographic and cultural groups, such as differences in cultural background,
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gender, age, and education (Jürges, 2007; King et al., 2004; Oksuzyan et al., 2019; but see
Rebelo & Pereira, 2014).
The hopit package delivers functions and methods to fit (hopit), summarize (e.g., summary),
check (e.g., profile), and compare (e.g., AIC and anova) fitted models. The latent and
threshold formulas are defined separately. The interactions can be specified both within and
between these formulas. Depending on how an interactions between latent and threshold
variables is interpreted, it can be added to either the latent or the threshold formula. The
package has also an option to include a survey design using the survey package (Lumley,
2004, 2019).
Once the model is fitted, the model estimates are used to determine reporting behavior; i.e.,
how the continuous latent measure is projected onto the categorical response. In practice, this
is done by comparing actual categorical ordered responses with theoretical responses that are
adjusted for heterogeneity in reporting behaviors, and are, therefore, more comparable across
individuals.
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Figure 1: Health index vs. self-reported health for a model fitted to an exemplary data.

One of the first steps of the analysis is the standardization of the latent measure to obtain
the latent index. In the self-rated health example the latent health index is a proxy for the
true underlying health of an individual, and varies from 0, representing the (model-based)
worst health state in the sample, to 1, representing the (model-based) best health state in the
sample (Fig. 1).
The predicted latent measure obtained from the model is also used to standardize the latent
variable coefficients. In the self-rated health example the standardized coefficients are called
disability weights (Jürges, 2007; Oksuzyan et al., 2019) and are calculated for each health
variable to provide information about the impact of a specific health measure on the latent
index (Fig. 2). The disability weight for a health variable is equal to the ratio of the corre-
sponding health coefficient and the difference between the lowest and the highest values of
predicted latent health. In other words, the disability weight reduces health index by some
given amount or percentage; i.e. the health index of every individual is reduced by the same
amount if the person had a heart attack or other heart problems)(Jürges, 2007; Oksuzyan
et al., 2019). While the latent index is intended to reflect the underlying health, happiness
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or other status across individuals, the standardized coefficients (disability weights for health
case), are computed for an average individual in the study population.
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Figure 2: Disability weights for the fitted model.

Reporting behavior analysis is based on the reclassification of individuals into new response
categories. There are two methods of reclassification: (1) Jürges (2007) percentile method
(see also Rebelo & Pereira, 2014; Oksuzyan et al., 2019) and (2) reclassification directly
based on model-estimated thresholds. In the first method, the classification is based on the
calculated latent index which is adjusted for inter-individual differences in reporting behavior.
This method is based on the original distribution of the categorical response variable (see also
Oksuzyan et al. (2019)).
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Figure 3: Differences between original and adjusted prevalences of bad health for the fitted model.

The package offers functions boot_hopit and percentile_CI for calculating the confidence
intervals for any measure derived from the model using parametric bootstrap methods. In each
of the bootstrap repetitions, a set of new model coefficients is drawn from the multivariate
normal distribution, assuming the originally estimated model coefficients as a mean and using
the model estimated variance-covariance matrix. The drawn coefficients are then used to
calculate the measure of interest via a user defined function. In the example presented in Fig.
3, the confidence intervals of the difference between the original and the adjusted frequencies
of bad health are calculated. The bad health is determined by the presence of “Poor” or
“Fair” self-rated health categories.
The results (Fig.3) show that men tend to over-report bad health at ages (50,60] and (50,70],
whereas women tend to over-report bad health at ages [70,80); and that both sexes at ages
above 80 tend to under-report bad health. See also Oksuzyan et al. (2019) for similar analyses
done on true SHARE data.
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