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Summary

Problems tackled by researchers and data scientists in aviation and air traffic management
(ATM) require manipulating large amounts of data representing trajectories, flight parameters
and geographical descriptions of the airspace they fly through.
Trajectories are mathematical objects used to describe the evolution of a moving object with
a finite list of parameters. The most common features in ATM include latitude, longitude,
altitude, all indexed by time, with derived ones such as ground speed, track angle and vertical
rate. Aircraft dynamic models may expect pitch, roll and yaw angles, together with indicated,
computed or true airspeed, Mach number, and more.
Further, airspaces are a key element of aviation: they are regulated by specific rules, whereby
navigation is allowed to determined types of aircraft meeting strict requirements. Such vol-
umes, assigned to air traffic controllers to ensure the safety of flights and proper separation
between aircraft are most commonly described as a combination of extruded polygons.
Common operations relevant to trajectories evolving in controlled airspaces range from basic
attributes: time of entry, time of exit, duration, maximum or minimum altitudes or speed; to
more complex operations like intersections of trajectories with airspaces, distances between
pairs of trajectories and more. Top performance and expressivity are key expectations for
common tasks like preprocessing and filtering of data, preparation of trajectory datasets, or
computation of key performance indicators.
The traffic library uses the Python language to reach a large base of academics and data
scientists users, to serve and benefit its active community and to build on top of a large
catalogue of libraries. Trajectories are modelled on top of Pandas dataframe, a natural solution
to represent time series, while airspaces leverage Shapely (Gillies & others, 2007) geometries
and operations (intersections, inclusion, cascaded joins among others).
traffic provides key operations for analysing trajectories evolving in airspaces. It is par-
ticularly useful to programmers and researchers needing to compute statistics, performance
indicators and building datasets for common machine learning tasks. Meaningful methods are
efficiently written using Pandas and Shapely optimised methods, more obvious operations are
directly passed to the underlying dataframes.

Core structure of the library

traffic acts as declarative grammar designed to preprocess collections of trajectories repre-
sented as core.Traffic classes holding a Pandas DataFrame as a single attribute. core.Tr
affic provides indexing on core.Flight structures, unfolds map operations—transforming
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Figure 1: Architecture of the library

a core.Flight into another core.Flight—, and filtering operations—associating a boolean
to a core.Flight, set to False if the trajectory should be discarded.
Methods on core.Flight are designed to be chained in a similar way Pandas functions. For
the sake of expressivity, any method returning a core.Flight or a boolean can be stacked on
core.Traffic structures, in order to be later lazily executed into one single multiprocessed
iteration.
Basic navigational data are embedded in the library, together with parsing facilities for most
common sources of information, with a main focus on Europe at the time being. A particular
attention has been put to a proper binding to ADS-B and Mode S data accessible through the
OpenSky (Schäfer, Strohmeier, Lenders, Martinovic, & Wilhelm, 2014) infrastructure, which
is openly accessible to academics; decoding capability for stored raw messages is also provided
via pyModeS library (Sun, Vû, Ellerbroek, & Hoekstra, 2019)
Finally, traffic library provides facilities to export data in common popular visualisation
tools including Matplotlib/Cartopy (Elson et al., 2018), Google Earth, Leaflet, Cesium JS for
geographical coordinates and altair (VanderPlas et al., 2018) for other features. For the time
being, any other kind of visualisation can be implemented as a plugin.

Related works

traffic has already been used as a preprocessing tool to prepare data for data analytics
(Schäfer et al., 2019) and machine learning methods (Olive & Bieber, 2018, Olive, Grignard,
Dubot, & Saint-Lot (2018), Olive & Basora (2019), Olive & Morio (2019)).
Several third party users have already been using and contributing feedback to the library,
mostly as bug reports and minor bug fixes.
We expect to improve the library with optimisations in processing time, enriched algorithms
and more powerful visualisation capabilities.

Olive, (2019). traffic, a toolbox for processing and analysing air traffic data. Journal of Open Source Software, 4(39), 1518. https://doi.org/
10.21105/joss.01518

2

https://doi.org/10.21105/joss.01518
https://doi.org/10.21105/joss.01518


References

Elson, P., Andrade, E. S. de, Hattersley, R., Campbell, E., Dawson, A., May, R., scmc72, et
al. (2018, November). SciTools/cartopy: v0.17.0. doi:10.5281/zenodo.1490296
Gillies, S., & others. (2007). Shapely: Manipulation and analysis of geometric objects.
toblerity.org. Retrieved from https://github.com/Toblerity/Shapely
Olive, X., & Basora, L. (2019). Identifying Anomalies in past en-route Trajectories with
Clustering and Anomaly Detection Methods. In Proceedings of the Air Traffic Management
Seminar.
Olive, X., & Bieber, P. (2018). Quantitative Assessments of Runway Excursion Precursors
using Mode S data. In Proceedings of the International Conference for Research in Air Trans-
portation.
Olive, X., & Morio, J. (2019). Trajectory clustering of air traffic flows around airports.
Aerospace Science and Technology, 84, 776–781. doi:10.1016/j.ast.2018.11.031
Olive, X., Grignard, J., Dubot, T., & Saint-Lot, J. (2018). Detecting Controllers’ Actions in
Past Mode S Data by Autoencoder-Based Anomaly Detection. In Proceedings of the SESAR
Innovation Days (p. 8).
Schäfer, M., Olive, X., Strohmeier, M., Smith, M., Martinovic, I., & Lenders, V. (2019).
OpenSky Report 2019: Analysing TCAS in the Real World using Big Data. In Proceedings of
the 38th Digital Avionics Systems Conference (DASC).
Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., & Wilhelm, M. (2014). Bringing
up OpenSky: A large-scale ADS-B sensor network for research. In Proceedings of the 13th
International Symposium on Information Processing in Sensor Networks. doi:10.1109/IPSN.
2014.6846743
Sun, J., Vû, H., Ellerbroek, J., & Hoekstra, J. M. (2019). PyModeS: Decoding Mode S
Surveillance Data for Open Air Transportation Research. IEEE Transactions on Intelligent
Transportation Systems. doi:10.1109/TITS.2019.2914770
VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A.,
Lees, E., et al. (2018). Altair: Interactive Statistical Visualizations for Python. Journal of
Open Source Software. doi:10.21105/joss.01057

Olive, (2019). traffic, a toolbox for processing and analysing air traffic data. Journal of Open Source Software, 4(39), 1518. https://doi.org/
10.21105/joss.01518

3

https://doi.org/10.5281/zenodo.1490296
https://github.com/Toblerity/Shapely
https://doi.org/10.1016/j.ast.2018.11.031
https://doi.org/10.1109/IPSN.2014.6846743
https://doi.org/10.1109/IPSN.2014.6846743
https://doi.org/10.1109/TITS.2019.2914770
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01518
https://doi.org/10.21105/joss.01518

	Summary
	Core structure of the library
	Related works
	References

