
RL: Generic reinforcement learning codebase in
TensorFlow
Bryan M. Li1, Alexander Cowen-Rivers1, Piotr Kozakowski1, David
Tao1, Siddhartha Rao Kamalakara1, Nitarshan Rajkumar1, Hariharan
Sezhiyan1, Sicong Huang1, and Aidan N. Gomez1

1 FOR.aiDOI: 10.21105/joss.01524

Software
• Review
• Repository
• Archive

Submitted: 13 June 2019
Published: 04 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Abstract

Vast reinforcement learning (RL) research groups, such as DeepMind and OpenAI, have their
internal (private) reinforcement learning codebases, which enable quick prototyping and com-
paring of ideas to many state-of-the-art (SOTA) methods. We argue the five fundamental
properties of a sophisticated research codebase are: modularity, reproducibility, many RL al-
gorithms pre-implemented, speed and ease of running on different hardware/ integration with
visualization packages. Currently, there does not exist any RL codebase, to the author’s
knowledge, which contains all the five properties, particularly with TensorBoard logging and
abstracting away cloud hardware such as TPU’s from the user. The codebase aims to help
distil the best research practices into the community as well as ease the entry access and
accelerate the pace of the field. More detailed documentation can be found here.

Related Work

There are currently various implementations available for reinforcement learning codebase
like OpenAI baselines (Dhariwal et al., 2017), Stable baselines (Hill, 2019), Tensorforce
(Schaarschmidt, Kuhnle, & Fricke, 2017), Ray rllib (Liang et al., 2017), Intel Coach (Caspi,
Leibovich, & Novik, 2017), Keras-RL (Plappert, 2019), Dopamine baselines (Castro, Moitra,
Gelada, Kumar, & Bellemare, 2018) and TF-Agents (Sergio Guadarrama, 2018). Ray rllib
(Liang et al., 2017) is amongst the strongest of existing RL frameworks, supporting; dis-
tributed operations, TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2017) and
multi-agent reinforcement learning (MARL). Unlike Ray rllib, we choose to focus on Tensor-
flow support, allowing us to integrate specific framework visualisation and experiment tracking
into our codebase. On top of this, we are developing a Kuberenetes script for MacOS and
Linux users to connect to any cloud computing platform, such as Google TPU’s, Amazon
AWS etc. Most other frameworks are plagued with problems like usability issues (difficult
to get started and increment over), very little modularity in code (no/ little hierarchy and
code reuse), no asynchronous training support, weak support for TensorBoard logging and so
on. All these problems are solved by our project, which is a generic codebase built for rein-
forcement learning (RL) research in Tensorflow (Schaarschmidt et al., 2017), with favoured
RL agents pre-implemented as well as integration with OpenAI Gym (Brockman et al., 2016)
environment focusing on quick prototyping and visualisation.
Deep Reinforcement Learning Reinforcement learning refers to a paradigm in artificial intelli-
gence where an agent performs a sequence of actions in an environment to maximise rewards
(Sutton & Barto, 1998). It is in many ways more general and challenging than supervised
learning since it requires no labels to train on; instead, the agent interacts continuously with
the environment, gathering more and more data and guiding its learning process.

Li et al., (2019). RL: Generic reinforcement learning codebase in TensorFlow. Journal of Open Source Software, 4(42), 1524. https://doi.org/
10.21105/joss.01524

1

https://doi.org/10.21105/joss.01524
https://github.com/openjournals/joss-reviews/issues/1524
https://github.com/for-ai/rl
https://doi.org/10.5281/zenodo.3408453
http://creativecommons.org/licenses/by/4.0/
https://rl-codebase.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.01524
https://doi.org/10.21105/joss.01524

Introduction: for-ai/rl

Further to the core ideas mentioned in the beginning, a good research codebase should enable
good development practices such as continually checkpointing the model’s parameters as well
as instantly restoring them to the latest checkpoint when available. Moreover, it should be
composed of simple, interchangeable building blocks, making it easy to understand and to
prototype new research ideas.
We will first introduce the framework for this project, and then we will detail significant
components. Lastly, we will discuss how to get started with training an agent under this
framework.
This codebase allows training RL agents by a training script as simple as the below for loop.

for epoch in range(epochs):
state = env.reset()
for step in range(max_episode_steps):

last_state = state
action = agent.act(state)
state, reward, done = env.step(action)
agent.observe(last_state, action, reward, state)
agent.update()

To accomplish this, we chose to modularise the codebase in the hierarchy shown below.

rl_codebase
|- train.py
|---> memory
| |- registry.py
|---> hparams
| |- registry.py
|---> envs
| |- registry.py
|---> models
| |- registry.py
|---> agents
| |- registry.py
| |---> algos
| | |- registry.py
| | |---> act_select
| | | |- registry.py
| | |---> grad_comp
| | | |- registry.py

Our modularisation enables simple and easy-to-read implementation of each component, such
as the Agent, Algo and Environment class, as shown below.

class Agent:
self.model: Model
self.algo: Algo

def observe(last_state, action, reward, new_state)
def act(state) -> action
def update()

Li et al., (2019). RL: Generic reinforcement learning codebase in TensorFlow. Journal of Open Source Software, 4(42), 1524. https://doi.org/
10.21105/joss.01524

2

https://doi.org/10.21105/joss.01524
https://doi.org/10.21105/joss.01524

class Algo(Agent):
def select_action(distribution) -> action
def compute_gradients(trajectory, parameters) -> gradients

class Environment:
def reset() -> state
def step(action) -> state, reward, done

The codebase includes agents like Deep Q Network (Mnih et al., 2013), Noisy DQN (Plap-
pert et al., 2017), Vanilla Policy Gradient (???), Deep Deterministic Policy Gradient (Silver
et al., 2014) and Proximal Policy Optimization (Schulman, Wolski, Dhariwal, Radford, &
Klimov, 2017). The project also includes simple random sampling and proportional prioritized
experience replay approaches, support for Discrete and Box environments, option to render
environment replay and record the replay in a video. The project also gives the possibility
to conduct model-free asynchronous training, setting hyperparameters for your algorithm of
choice, modularized action and gradient update functions and option to show your training
logs in a TensorBoard summary.
In order to run an experiment, run:
python train.py --sys ... --hparams ... --output_dir

Ideally, “train.py” should never need to be modified for any of the typical single agent en-
vironments. It covers the logging of reward, checkpointing, loading, rendering environment/
dealing with crashes and saving the experiments hyperparameters, which takes a significant
workload off the average reinforcement learning researcher.

“--sys”(str) defines the system chosen to run experiment with;
e.g. “local” for running on the local machine.

“--env”(str) specifies the environment.
“--hparam_override”(str) overrides hyperparameters.
“--train_steps”(int) sets training length.
“--test_episodes”(int) tests episodes.
“--eval_episodes”(int) sets Validation episodes.
“--training"(bool) freeze model weights is set to False.
“--copies”(int) set the number of times to perform multiple

versions of training/testing.
“--render”(bool) turns rendering on/ off.
“--record_video”(bool) records the video with, which outputs a .mp4

of each recorded episode.
“--num_workers"(int) seamlessly brings our synchronous agent

into an asynchronous agent.

Full Example

Before you run a full examples, it would be to your benefit to install the following:

• Nvidia CUDA on machines with GPUs to enable faster training. Installation instructions
here

• Tensorboard for training visualization. Install by running pip install tensorboard

This tuturial will make use of a Conda environment as the preferred package manager. In-
stallation instructions can be found here.

Li et al., (2019). RL: Generic reinforcement learning codebase in TensorFlow. Journal of Open Source Software, 4(42), 1524. https://doi.org/
10.21105/joss.01524

3

https://developer.nvidia.com/cuda-downloads
https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://doi.org/10.21105/joss.01524
https://doi.org/10.21105/joss.01524

After installing Conda, create and activate an environment, and install all dependencies within
that environment:

conda create -n rl python=3.6
conda activate rl
sh setup.sh

To run locally, we will train DQN on the Carpole-v1 Gym environment:

start training
python train.py --sys local --hparams dqn_cartpole --output_dir /tmp/rl-testing
run tensorboard
tensorboard --logdir /tmp/rl-testing
test agent
python train.py --sys local --hparams dqn_cartpole --output_dir /tmp/rl-testing

--training False --render True

Conclusion

We have outlined the benefits of using a highly modularised reinforcement learning codebase.
The next stages of development for the RL codebase are implementing more SOTA model-free
RL techniques (GAE, Rainbow, SAC, IMPALA), introducing model-based approaches, such as
World Models (Ha & Schmidhuber, 2018), integrating into an open-sourced experiment man-
aging tool and expanding the codebases compatibility with a broader range of environments,
such as Habitat (Savva et al., 2019). We would also like to see automatic hyperparameter
optimization techniques to be integrated, such as Bayesian Optimization method which was
crucial to the success of some of DeepMinds most considerable reinforcement learning feats
(Y. Chen et al., 2018).

Acknowledgements

We would like to thank all other members of For.ai, for useful discussions and feedback.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016).
Tensorflow: A system for large-scale machine learning. In 12th usenix symposium on operating
systems design and implementation osdi 16) (pp. 265–283).
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.
Caspi, I., Leibovich, G., & Novik, G. (2017). Reinforcement learning coach.(Dec. 2017),
1134899. doi:10.5281/zenodo.1134899
Castro, P. S., Moitra, S., Gelada, C., Kumar, S., & Bellemare, M. G. (2018). Dopamine: A
research framework for deep reinforcement learning. arXiv preprint arXiv:1812.06110.
Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., & Freitas, N. de.
(2018). Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.

Li et al., (2019). RL: Generic reinforcement learning codebase in TensorFlow. Journal of Open Source Software, 4(42), 1524. https://doi.org/
10.21105/joss.01524

4

https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.21105/joss.01524
https://doi.org/10.21105/joss.01524

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., et
al. (2017). Openai baselines. Retrieved from https://github.com/openai/baselines
Ha, D., & Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In
Advances in neural information processing systems (pp. 2450–2462).
Hill. (2019, June). Hill-a/stable-baselines. Retrieved from https://github.com/hill-a/
stable-baselines
Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gonzalez, J., Goldberg, K., et al.
(2017). Ray rllib: A composable and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller,
M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., et al. (2017).
Automatic differentiation in pytorch. In NIPS autodiff workshop.
Plappert, M. (2019, March). Keras-rl/keras-rl. GitHub. Retrieved from https://github.com/
keras-rl/keras-rl
Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., et al.
(2017). Parameter space noise for exploration. arXiv preprint arXiv:1706.01905.
Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J., et al.
(2019). Habitat: A platform for embodied ai research. arXiv preprint arXiv:1904.01201.
Schaarschmidt, M., Kuhnle, A., & Fricke, K. (2017). Tensorforce: A tensorflow library for
applied reinforcement learning. Retrieved from https://github.com/tensorflow/tensorflow
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.
Sergio Guadarrama, O. R., Anoop Korattikara. (2018). TF-agents: A library for reinforcement
learning in tensorflow. Retrieved from ”https://github.com/tensorflow/agents”
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deter-
ministic policy gradient algorithms. In E. P. Xing & T. Jebara (Eds.), Proceedings of the
31st International Conference on Machine Learning, Proceedings of machine learning research
(Vol. 32, pp. 387–395). Bejing, China: PMLR. Retrieved from http://proceedings.mlr.press/
v32/silver14.html
Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning. Vol. 135.
Cambridge: MIT press.

Li et al., (2019). RL: Generic reinforcement learning codebase in TensorFlow. Journal of Open Source Software, 4(42), 1524. https://doi.org/
10.21105/joss.01524

5

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/tensorflow/tensorflow
%22https://github.com/tensorflow/agents%22
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.21105/joss.01524
https://doi.org/10.21105/joss.01524

	Abstract
	Related Work
	Introduction: for-ai/rl
	Full Example
	Conclusion
	Acknowledgements
	References

