
pyMARS: automatically reducing chemical kinetic
models in Python
Phillip O. Mestas III1, Parker Clayton1, and Kyle E. Niemeyer1

1 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University,
Corvallis, OR USA 97331

DOI: 10.21105/joss.01543

Software
• Review
• Repository
• Archive

Submitted: 24 June 2019
Published: 08 September 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Chemically reacting fluid flows occur in a diverse range of scientific and engineering fields,
including combustion and fire, atmopsheric and oceanic fluid flows, electrochemical devices,
heterogeneous catalysis, materials processing, and astrophysical fluid dynamics. Numerical
simulations of reacting fluid flows rely on accurate chemical kinetic models to describe the
participating chemical species and elementary reactions through which they interact. However,
as models grow in detail they also grow in size, adding more species and reactions to capture
intermediates and pathways. In the field of combustion, kinetic models for molecules relevant
to transportation fuels (e.g., gasoline, diesel, jet fuel) can contain thousands of species and
tens of thousands of elementary reactions (T. Lu & Law, 2009). Incorporating such models
into multidimensional computational fluid dynamics simulations is practically impossible, due
to the associated computational expense.
pyMARS, which stands for “Python-based Model Automatic Reduction Software”, is a soft-
ware package that implements and applies literature methods for reducing chemical kinetic
models, particularly targeted at combustion applications. pyMARS currently implements four
“skeletal” reduction methods that identify and remove unimportant species and reactions: di-
rected relation graph (DRG) (T. Lu & Law, 2005, 2006a, 2006b), directed relation graph with
error propagation (DRGEP) (Niemeyer & Sung, 2011; Pepiot-Desjardins & Pitsch, 2008), path
flux analysis (PFA) (Sun, Chen, Gou, & Ju, 2010), and sensitivity analysis (Niemeyer & Sung,
2015; Niemeyer, Sung, & Raju, 2010; Sankaran, Hawkes, Chen, Lu, & Law, 2007; Zheng,
Lu, & Law, 2007). pyMARS succeeds the earlier Fortran-based MARS package (Niemeyer &
Sung, 2014, 2015; Niemeyer et al., 2010), which used an in-house modified version of the
proprietary Chemkin III library (Kee, Rupley, Meeks, & Miller, 1996).

Background and features

DRG, DRGEP, and PFA represent the kinetic system as a graph, where nodes are species and
directed, weighted edges represent the dependence of one species on another, through their
participation in reactions. All three methods define interaction coefficients that approximate
the error that would be induced in the overall production/consumption of one species if the
other was removed from the model. To eliminate species, a cutoff threshold (e.g., 0.01–0.1)
is applied to the system to eliminate unimportant connections or species. The methods differ
in their definition of these coefficients and whether/how indirect relationships between species
play a role. For all three methods, pyMARS iteratively increases the cutoff threshold until
reaching a user-specified error limit.
Sensitivity analysis can be applied directly to a starting model, but generally it should be
informed by and follow a graph-based method such as DRG or DRGEP (i.e., DRGASA and

Mestas et al., (2019). pyMARS: automatically reducing chemical kinetic models in Python. Journal of Open Source Software, 4(41), 1543.
https://doi.org/10.21105/joss.01543

1

https://doi.org/10.21105/joss.01543
https://github.com/openjournals/joss-reviews/issues/1543
https://github.com/Niemeyer-Research-Group/pyMARS
https://doi.org/10.5281/zenodo.3401549
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01543


DRGEPSA) due to the high cost associated with using such a brute-force approach on a
large model. pyMARS implements two sensitivity analysis approaches: “initial” and “greedy”
(Niemeyer & Sung, 2015). The initial algorithm finds the error induced by individually elim-
inating all species under consideration, one-by-one, then removes species in ascending order
of induced error until reaching the limit. In contrast, the greedy algorithm reevaluates the
induced error of remaining species at each step, ensuring that it uses the most-current infor-
mation; this increases computational expense significantly, but generates a smaller reduced
model.
Required inputs for pyMARS to perform model reduction include the starting chemical kinetic
model in the standard Cantera (Goodwin, Speth, Moffat, & Weber, 2018) or Chemkin (Kee
et al., 1996) formats (it first converts the latter to the former) and a YAML file with reduction
parameters (including method and a maximum error limit to constrain the reduced model) and
a list of initial conditions for homogeneous autoignition simulations. These simulations are
used both to obtain ignition delay values for gauging the error of a candidate model, and also
to sample thermochemical state data for the reduction methods (where 20 points are sampled
during the ignition temperature rise). A graph-based reduction method can be specified
using the method key, the sensitivity-analysis key can be specified as True to perform
standalone sensitivity analysis, or both can be given to perform DRG/DRGEP/PFA-informed
sensitivity analysis. Additional input keys include target species for DRG/DRGEP/PFA and
optionally specifying a list of species to always retain.
Additional features include:

• Simulations can be parallelized via the multiprocessing module by adding the --num
_threads command-line option and specifying a value greater than one. (Including the
option alone will lead to pyMARS using the available number of threads minus one.)

• To save (potentially significant) time when performing multiple reductions for the same
model, pyMARS saves and automatically reuses sampled autoignition data when possi-
ble.

• pyMARS provides a conversion functionality between the Cantera and Chemkin model
formats, accessible by passing the --convert option.

pyMARS relies on the Cantera suite (Goodwin et al., 2018) to handle the chemical kinetics
and perform autoignition simulations; it temporarily stores full simulation results as HDF5
files using PyTables (PyTables Developers Team, 2002–2019). It uses PyYAML (Simonov &
others, 2018) to parse simulation input files, and NumPy (Walt, Colbert, & Varoquaux, 2011)
arrays to store and manipulate data. Graph construction and searching rely on NetworkX
(Hagberg, Schult, & Swart, 2008, 2019).

Future work

Future work includes adding more reduction stages, including unimportant reaction elimina-
tion and incorporating the quasi-steady-state approximation for species (Niemeyer & Sung,
2015). In addition, we plan to add additional combustion phenomena for sampling and error
evaluation, including one-dimensional laminar flame and perfectly stirred reactor simulations.

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant
OAC-1535065.

Mestas et al., (2019). pyMARS: automatically reducing chemical kinetic models in Python. Journal of Open Source Software, 4(41), 1543.
https://doi.org/10.21105/joss.01543

2

https://doi.org/10.21105/joss.01543


References

Goodwin, D. G., Speth, R. L., Moffat, H. K., & Weber, B. W. (2018). Cantera: An object-
oriented software toolkit for chemical kinetics, thermodynamics, and transport processes.
https://www.cantera.org. doi:10.5281/zenodo.1174508
Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th python in science conference (pp. 11–15). Pasadena, CA USA.
Hagberg, A. A., Schult, D. A., & Swart, P. J. (2019). NetworkX. https://github.com/
networkx/networkx.
Kee, R. J., Rupley, F. M., Meeks, E., & Miller, J. A. (1996, May). CHEMKIN-III: A FORTRAN
chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sandia
National Laboratories Report SAND-96-8216. doi:10.2172/481621
Lu, T., & Law, C. K. (2005). A directed relation graph method for mechanism reduction.
Proceedings of the Combustion Institute, 30(1), 1333–1341. doi:10.1016/j.proci.2004.08.145
Lu, T., & Law, C. K. (2006a). Linear time reduction of large kinetic mechanisms with
directed relation graph: N-heptane and iso-octane. Combustion and Flame, 144(1-2), 24–36.
doi:10.1016/j.combustflame.2005.02.015
Lu, T., & Law, C. K. (2006b). On the applicability of directed relation graphs to the re-
duction of reaction mechanisms. Combustion and Flame, 146(3), 472–483. doi:10.1016/j.
combustflame.2006.04.017
Lu, T., & Law, C. K. (2009). Toward accommodating realistic fuel chemistry in large-scale
computations. Progress in Energy and Combustion Science, 35(2), 192–215. doi:10.1016/j.
pecs.2008.10.002
Niemeyer, K. E., & Sung, C.-J. (2011). On the importance of graph search algorithms for
DRGEP-based mechanism reduction methods. Combustion and Flame, 158(8), 1439–1443.
doi:10.1016/j.combustflame.2010.12.010
Niemeyer, K. E., & Sung, C.-J. (2014). Mechanism reduction for multicomponent surrogates:
A case study using toluene reference fuels. Combustion and Flame, 161(11), 2752–2764.
doi:10.1016/j.combustflame.2014.05.001
Niemeyer, K. E., & Sung, C.-J. (2015). Reduced chemistry for a gasoline surrogate valid at
engine-relevant conditions. Energy & Fuels, 29(2), 1172–1185. doi:10.1021/ef5022126
Niemeyer, K. E., Sung, C.-J., & Raju, M. P. (2010). Skeletal mechanism generation for
surrogate fuels using directed relation graph with error propagation and sensitivity analysis.
Combustion and Flame, 157(9), 1760–1770. doi:10.1016/j.combustflame.2009.12.022
Pepiot-Desjardins, P., & Pitsch, H. (2008). An efficient error-propagation-based reduction
method for large chemical kinetic mechanisms. Combustion and Flame, 154(1-2), 67–81.
doi:10.1016/j.combustflame.2007.10.020
PyTables Developers Team. (2002–2019). PyTables: Hierarchical datasets in Python. Re-
trieved from https://www.pytables.org/
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T., & Law, C. K. (2007). Structure of a
spatially developing turbulent lean methane–air Bunsen flame. Proceedings of the Combustion
Institute, 31(1), 1291–1298. doi:10.1016/j.proci.2006.08.025
Simonov, K., & others. (2018). PyYAML. https://github.com/yaml/pyyaml/.
Sun, W., Chen, Z., Gou, X., & Ju, Y. (2010). A path flux analysis method for the reduction
of detailed chemical kinetic mechanisms. Combustion and Flame, 157(7), 1298–1307. doi:10.
1016/j.combustflame.2010.03.006

Mestas et al., (2019). pyMARS: automatically reducing chemical kinetic models in Python. Journal of Open Source Software, 4(41), 1543.
https://doi.org/10.21105/joss.01543

3

https://www.cantera.org
https://doi.org/10.5281/zenodo.1174508
https://github.com/networkx/networkx
https://github.com/networkx/networkx
https://doi.org/10.2172/481621
https://doi.org/10.1016/j.proci.2004.08.145
https://doi.org/10.1016/j.combustflame.2005.02.015
https://doi.org/10.1016/j.combustflame.2006.04.017
https://doi.org/10.1016/j.combustflame.2006.04.017
https://doi.org/10.1016/j.pecs.2008.10.002
https://doi.org/10.1016/j.pecs.2008.10.002
https://doi.org/10.1016/j.combustflame.2010.12.010
https://doi.org/10.1016/j.combustflame.2014.05.001
https://doi.org/10.1021/ef5022126
https://doi.org/10.1016/j.combustflame.2009.12.022
https://doi.org/10.1016/j.combustflame.2007.10.020
https://www.pytables.org/
https://doi.org/10.1016/j.proci.2006.08.025
https://github.com/yaml/pyyaml/
https://doi.org/10.1016/j.combustflame.2010.03.006
https://doi.org/10.1016/j.combustflame.2010.03.006
https://doi.org/10.21105/joss.01543


Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
doi:10.1109/mcse.2011.37
Zheng, X. L., Lu, T. F., & Law, C. K. (2007). Experimental counterflow ignition temperatures
and reaction mechanisms of 1,3-butadiene. Proceedings of the Combustion Institute, 31(1),
367–375. doi:10.1016/j.proci.2006.07.182

Mestas et al., (2019). pyMARS: automatically reducing chemical kinetic models in Python. Journal of Open Source Software, 4(41), 1543.
https://doi.org/10.21105/joss.01543

4

https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1016/j.proci.2006.07.182
https://doi.org/10.21105/joss.01543

	Summary
	Background and features
	Future work
	Acknowledgements
	References

