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Summary

Chemically reacting fluid flows occur in a diverse range of scientific and engineering fields,
including combustion and fire, atmopsheric and oceanic fluid flows, electrochemical devices,
heterogeneous catalysis, materials processing, and astrophysical fluid dynamics. Numerical
simulations of reacting fluid flows rely on accurate chemical kinetic models to describe the
participating chemical species and elementary reactions through which they interact. However,
as models grow in detail they also grow in size, adding more species and reactions to capture
intermediates and pathways. In the field of combustion, kinetic models for molecules relevant
to transportation fuels (e.g., gasoline, diesel, jet fuel) can contain thousands of species and
tens of thousands of elementary reactions (T. Lu & Law, 2009). Incorporating such models
into multidimensional computational fluid dynamics simulations is practically impossible, due
to the associated computational expense.

pyMARS, which stands for “Python-based Model Automatic Reduction Software”, is a soft-
ware package that implements and applies literature methods for reducing chemical kinetic
models, particularly targeted at combustion applications. pyMARS currently implements four
“skeletal” reduction methods that identify and remove unimportant species and reactions: di-
rected relation graph (DRG) (T. Lu & Law, 2005, 2006a, 2006b), directed relation graph with
error propagation (DRGEP) (Niemeyer & Sung, 2011; Pepiot-Desjardins & Pitsch, 2008), path
flux analysis (PFA) (Sun, Chen, Gou, & Ju, 2010), and sensitivity analysis (Niemeyer & Sung,
2015; Niemeyer, Sung, & Raju, 2010; Sankaran, Hawkes, Chen, Lu, & Law, 2007; Zheng,
Lu, & Law, 2007). pyMARS succeeds the earlier Fortran-based MARS package (Niemeyer &
Sung, 2014, 2015; Niemeyer et al., 2010), which used an in-house modified version of the
proprietary Chemkin 111 library (Kee, Rupley, Meeks, & Miller, 1996).

Background and features

DRG, DRGEP, and PFA represent the kinetic system as a graph, where nodes are species and
directed, weighted edges represent the dependence of one species on another, through their
participation in reactions. All three methods define interaction coefficients that approximate
the error that would be induced in the overall production/consumption of one species if the
other was removed from the model. To eliminate species, a cutoff threshold (e.g., 0.01-0.1)
is applied to the system to eliminate unimportant connections or species. The methods differ
in their definition of these coefficients and whether/how indirect relationships between species
play a role. For all three methods, pyMARS iteratively increases the cutoff threshold until
reaching a user-specified error limit.

Sensitivity analysis can be applied directly to a starting model, but generally it should be
informed by and follow a graph-based method such as DRG or DRGEP (i.e., DRGASA and
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DRGEPSA) due to the high cost associated with using such a brute-force approach on a
large model. pyMARS implements two sensitivity analysis approaches: “initial” and “greedy”
(Niemeyer & Sung, 2015). The initial algorithm finds the error induced by individually elim-
inating all species under consideration, one-by-one, then removes species in ascending order
of induced error until reaching the limit. In contrast, the greedy algorithm reevaluates the
induced error of remaining species at each step, ensuring that it uses the most-current infor-
mation; this increases computational expense significantly, but generates a smaller reduced
model.

Required inputs for pyMARS to perform model reduction include the starting chemical kinetic
model in the standard Cantera (Goodwin, Speth, Moffat, & Weber, 2018) or Chemkin (Kee
et al., 1996) formats (it first converts the latter to the former) and a YAML file with reduction
parameters (including method and a maximum error limit to constrain the reduced model) and
a list of initial conditions for homogeneous autoignition simulations. These simulations are
used both to obtain ignition delay values for gauging the error of a candidate model, and also
to sample thermochemical state data for the reduction methods (where 20 points are sampled
during the ignition temperature rise). A graph-based reduction method can be specified
using the method key, the sensitivity-analysis key can be specified as True to perform
standalone sensitivity analysis, or both can be given to perform DRG/DRGEP /PFA-informed
sensitivity analysis. Additional input keys include target species for DRG/DRGEP/PFA and
optionally specifying a list of species to always retain.

Additional features include:

= Simulations can be parallelized via the multiprocessing module by adding the ——num
_threads command-line option and specifying a value greater than one. (Including the
option alone will lead to pyMARS using the available number of threads minus one.)

= To save (potentially significant) time when performing multiple reductions for the same
model, pyMARS saves and automatically reuses sampled autoignition data when possi-
ble.

= pyMARS provides a conversion functionality between the Cantera and Chemkin model
formats, accessible by passing the ——convert option.

pyMARS relies on the Cantera suite (Goodwin et al., 2018) to handle the chemical kinetics
and perform autoignition simulations; it temporarily stores full simulation results as HDF5
files using PyTables (PyTables Developers Team, 2002-2019). It uses PyYAML (Simonov &
others, 2018) to parse simulation input files, and NumPy (Walt, Colbert, & Varoquaux, 2011)
arrays to store and manipulate data. Graph construction and searching rely on NetworkX
(Hagberg, Schult, & Swart, 2008, 2019).

Future work

Future work includes adding more reduction stages, including unimportant reaction elimina-
tion and incorporating the quasi-steady-state approximation for species (Niemeyer & Sung,
2015). In addition, we plan to add additional combustion phenomena for sampling and error
evaluation, including one-dimensional laminar flame and perfectly stirred reactor simulations.
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