
phasespace: n-body phase space generation in Python
Albert Puig Navarro1 and Jonas Eschle1

1 Physik-Institut, Universität Zürich, Zürich (Switzerland)
DOI: 10.21105/joss.01570

Software
• Review
• Repository
• Archive

Submitted: 03 June 2019
Published: 29 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Simulated particle decays are common in experimental particle physics. They are used to study
a wide variety of aspects of a physics analysis, such as signal response, detector effects, and
the efficiency of selection requirements, in a controlled manner. While it is possible to encode
complex physics dynamics into these simulations at the cost of increased complexity and larger
computer requirements, in many cases it is enough to generate these simulated samples as
if only kinematic physics occurred, i.e., in an isotropic way. This type of generation, called
“phase space generation”, is very fast and offers simple and predictable patterns, making it
an attractive first step in many physics analyses.
The phasespace package implements phase space event generation based on the Raubold
and Lynch method described in (James, 1968). This method was previously implemented
in the GENBOD function of the FORTRAN-based CERNLIB library. It was posteriorly ported
to C++ for the ROOT toolkit (Brun & Rademakers, 1997) as the TGenPhaseSpace class,
which is currently the most used implementation in particle physics. The phasespace package
provides a pure Python implementation of the Raubold and Lynch method using the Tensorflow
platform (Abadi et al., 2015) as its computational backend. Unlike TGenPhaseSpace, the ph
asespace approach offers seamless integration with the scientific Python ecosystem (numpy,
pandas, scikit-learn…) while at the same time provides excellent performance and scalability
both in CPUs and GPUs thanks to Tensorflow.
In addition, phasespace allows the generation of complex multi-decay chains, including non-
constant masses as is needed for the simulation of resonant particles. This functionality opens
the door for its use as the basis for importance sampling in Dalitz and amplitude decay fitters,
which typically need to implement their own solution based on TGenPhaseSpace; in this
sense, phasespace is currently being used for the implementation of amplitude fit sampling
in the zfit fitter (Eschle, Puig Navarro, & Silva Coutinho, 2019).
The correctness of phasespace is continuously validated through its test suite against TGen
PhaseSpace and the RapidSim package (Cowan, Craik, & Needham, 2017), an application
for the simulation of heavy-quark hadron decays; this latter application also uses TGenPhase
Space, but adds features such as multi-decay chains and simulation of the kinematics found
in colliders such as the LHC.
In summary, phasespace is designed to fill an important gap in the recent paradigm shift of
particle physics analysis towards integration with the scientific Python ecosystem. To do so it
also has more advanced functionality than its C++-based predecessors. With its ease of use,
clear interface and direct interoperability with other packages, phasespace provides a solid
foundation to build upon in the quest for a full Python-based particle physics analysis software
stack. The source code for phasespace has been archived to Zenodo with the linked DOI:
(Puig Navarro & Eschle, 2019).

Navarro et al., (2019). phasespace: n-body phase space generation in Python. Journal of Open Source Software, 4(42), 1570. https:
//doi.org/10.21105/joss.01570

1

https://doi.org/10.21105/joss.01570
https://github.com/openjournals/joss-reviews/issues/1570
https://github.com/zfit/phasespace/
https://doi.org/10.5281/zenodo.2591993
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01570
https://doi.org/10.21105/joss.01570


Acknowledgements

A.P. acknowledges support from the Swiss National Science Foundation under contract
168169.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., et al.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
https://www.tensorflow.org/
Brun, R., & Rademakers, F. (1997). ROOT: An object oriented data analysis framework.
Nucl. Instrum. Meth., A389, 81–86. doi:10.1016/S0168-9002(97)00048-X
Cowan, G. A., Craik, D. C., & Needham, M. D. (2017). RapidSim: an application for the
fast simulation of heavy-quark hadron decays. Comput. Phys. Commun., 214, 239–246.
doi:10.1016/j.cpc.2017.01.029
Eschle, J., Puig Navarro, A., & Silva Coutinho, R. (2019). zfit: scalable pythonic fitting.
doi:10.5281/zenodo.2602043
James, F. (1968). Monte-Carlo phase space.
Puig Navarro, A., & Eschle, J. (2019). Phasespace: N-body phase space generation in python.
doi:10.5281/zenodo.2591993

Navarro et al., (2019). phasespace: n-body phase space generation in Python. Journal of Open Source Software, 4(42), 1570. https:
//doi.org/10.21105/joss.01570

2

https://www.tensorflow.org/
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/j.cpc.2017.01.029
https://doi.org/10.5281/zenodo.2602043
https://doi.org/10.5281/zenodo.2591993
https://doi.org/10.21105/joss.01570
https://doi.org/10.21105/joss.01570

	Summary
	Acknowledgements
	References

