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Summary

SG-t-SNE-Π is a high-performance software for swift embedding of a large, sparse, stochastic
graph/network into a d-dimensional space (d = 1, 2, 3) on a shared-memory computer, es-
pecially on personal laptop and desktop computers. Graphs/networks are an important type
of relational data, arising ubiquitously in real-world applications and various research fields.
Such data include biological networks, social networks, communication networks, food webs,
word co-occurrence networks, see Kovács et al. (2019) and Yang & Leskovec (2015) for more
real-world networks. Graph embedding maps each vertex of the graph to a d-dimensional fea-
ture vector. Graph embedding into a d-dimensional space with d = 1, 2, 3 is frequently used
in data-based scientific studies for visual inspection of data, interpretation of network-based
analysis results, interactive inquiries and hypothesis generation.
The software SG-t-SNE-Π and its underlying algorithm are built upon precursor algorithms
and software for stochastic neighbor embedding of high-dimensional data, namely the origi-
nal Stochastic Neighbor Embedding (SNE) algorithm by Hinton & Roweis (2003), the algo-
rithm for t-distributed Stochastic Neighbor Embedding (t-SNE) by van der Maaten & Hinton
(2008), and their variants (Linderman, Rachh, Hoskins, Steinerberger, & Kluger, 2019; van
der Maaten, 2014).12 The t-SNE algorithm has successfully assisted scientific discoveries, as
reported in numerous articles in Nature and Science magazines. However, previous t-SNE
algorithms and software are limited in two aspects: (i) The algorithms require that the data
points be in a metric space and the associated graph (internally generated) be regular with a
constant degree. In many real-world networks, the vertices do not readily reside in a metric
space, and their degrees vary greatly, far from constant. (ii) The software is limited in prac-
tical use either to small graphs/networks or to embedding to d < 3 dimensional space. We
remove both limitations. SG-t-SNE-Π admits arbitrary, sparse, stochastic graphs/networks. It
is demonstrated by Pitsianis, Iliopoulos, Floros, & Sun (2019) for novel, autonomous embed-
ding of large, real-world stochastic networks. SG-t-SNE-Π also enables fast three-dimensional
(3D) graph embedding, which preserves and reveals more or even critical structural informa-
tion as shown by Pitsianis et al. (2019), on modern laptop and desktop computers with ease
of use.
SG-t-SNE-Π is implemented in C++. It takes as input a stochastic graph and outputs d-
dimensional coordinate vectors. We provide two additional interfaces. The first is to support
the conventional t-SNE, with its typical interface and wrappers (van der Maaten, 2014), which
converts data points in a metric space to a stochastic k-nearest neighbor graph. The second is
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a MATLAB interface. SG-t-SNE-Π is used to obtain all numerical experiments in the research
article by Pitsianis et al. (2019) and the accompanying supplementary material.3
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