
Singularity Compose: Orchestration for Singularity
Instances
Vanessa Sochat1

1 Stanford University Research Computing, Stanford University, Stanford, CA 94305
DOI: 10.21105/joss.01578

Software
• Review
• Repository
• Archive

Submitted: 24 June 2019
Published: 26 August 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Singularity Compose is an orchestration tool for Singularity container instances.
The Singularity container technology started to become popular in 2016, as it offered a more
secure option to run encapsulated environments (Kurtzer, Sochat, & Bauer, 2017). Tradi-
tionally, this meant that Singularity users could run a script built into the container (called
a runscript), execute a custom command, or shell into a container. Unlike Docker (Merkel,
2014), these basic interactions simply interacted with processes in the foreground (e.g., run-
ning a script and exiting) and were not appropriate to run background services. This was a
task for container instances (Singularity contributors, 2019).
A container instance (Singularity contributors, 2019) equates to running a container in a
detached or daemon mode. Instances allow for running persistent services in the background,
and then interaction with these services from the host and other containers. Examples of
services include databases, web servers, and associated applications that interact with them.
While a container technology can provide command line and other programmatic interfaces
for interaction with instances, what is also needed is a configuration file for orchestration and
customization of several instances. For sibling container technology Docker, Docker Compose
(Docker, Inc., 2019) was developed for this purpose. For local and production usage, the
user could create a docker-compose.yml file to define services, volumes, ports exposed, and
other customizations to networking and environment (Docker, Inc., 2019). Notably, there was
strong incentive for the development of such a tool, because Docker Compose existed before
Kubernetes was available in the middle of 2015 (Wikipedia contributors, 2019).
No equivalent orchestration tool was created for Singularity container instances. While Singu-
larity has empowered enterprise users to run services via platforms such as Kubernetes (Meyer,
2019), these platforms come with privilege. It is often the case that a production Kubernetes
cluster is not readily available to a user via his or her institution, or that the user cannot pay
a cloud provider to deploy one. However, this does not imply that a non enterprise user (e.g.,
an open source developer or academic) would not benefit from such an orchestration tool.
Unfortunately, since the current trend and strongest potential for making profits is centered
around encouraging usage of enterprise tools like Kubernetes (Wikipedia contributors, 2019),
there is not any urgent incentive on part of the provider companies to invest in a non-enterprise
orchestration tool. It is logical, rational, and understandable that companies exist to make
profit, and must make profit to exist. As the need is unfulfilled, it is the responsibility of the
open source community to step up.

Singularity Compose

The solution for orchestration of container instances from the open source community is
Singularity Compose (Sochat, 2019a). Singularity Compose is software for non enterprise

Sochat, (2019). Singularity Compose: Orchestration for Singularity Instances. Journal of Open Source Software, 4(40), 1578. https://doi.org/
10.21105/joss.01578

1

https://doi.org/10.21105/joss.01578
https://github.com/openjournals/joss-reviews/issues/1578
https://github.com/singularityhub/singularity-compose
https://doi.org/10.5281/zenodo.3376793
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01578
https://doi.org/10.21105/joss.01578


Figure 1: Singularity Compose

users to easily create a configuration file to control creation and interaction of Singularity
container instances. It allows for the creation of a singularity-compose.yml file, in
which the user can define one or more container services, optionally with exposed ports and
volumes on the host. The user can easily define a container binary to build or pull from a
remote resource, along with custom scripts to run after creation of the instances. Singularity
Compose handles designation of addresses on a local bridge network for each container, and
creation of resource files to bind to the containers to “see” one another. Importantly, by way
of adding a Singularity Compose to a repository, a user is ensuring not just reproducibility of a
container recipe, but also reproducibility of it’s build and creation of services. For example, a
simplified version of a sequence of steps to build two containers and bring them up as instances
might look like this:

$ sudo singularity build app/app.sif app/Singularity
$ sudo singularity build nginx/nginx.sif nginx/Singularity.nginx

$ singularity instance start \
--bind nginx.conf:/etc/nginx/conf.d/default.conf \
--bind nginx/uwsgi_params.par:/etc/nginx/uwsgi_params.par \
--bind nginx/cache:/var/cache/nginx \
--bind nginx/run:/var/run \
--bind app:/code \
--bind static:/var/www/static \
--bind images:/var/www/images \
--bind etc.hosts:/etc/hosts \
--net --network-args "portmap=80:80/tcp" --network-args "IP=10.22.0.2" \
--hostname nginx --writable-tmpfs nginx/nginx.sif nginx

$ singularity instance start \
--bind app:/code \
--bind static:/var/www/static \
--bind images:/var/www/images \
--bind etc.hosts:/etc/hosts \

Sochat, (2019). Singularity Compose: Orchestration for Singularity Instances. Journal of Open Source Software, 4(40), 1578. https://doi.org/
10.21105/joss.01578

2

https://doi.org/10.21105/joss.01578
https://doi.org/10.21105/joss.01578


--net --network-args "portmap=8000:8000/tcp" --network-args "IP=10.22.0.3" \
--hostname app --writable-tmpfs app/app.sif app

$ singularity instance list

This is a complicated set of commands. In the above, we first build the two containers. There
are no checks here if the recipes exist, or if the containers themselves already exist. We then
start instances for them. If we save these commands in a file, we need to consistently hard
code the paths to the container binaries, along with the ip addresses, hostnames, and volumes.
There are no checks done before attempting the creation if the volumes meant to be bound
actually exist. We also take for granted that we’ve already generated an etc.hosts file to
bind to the container at /etc/hosts, which will define the container instances to have the
same names supplied with --hostname. For the networking, we have to be mindful of the
default bridge provided by Singularity, along with how to specify networking arguments under
different conditions. This entire practice is clearly tedious. For a user to constantly need to
generate and then re-issue these commands, it’s not a comfortable workflow. However, with
Singularity Compose, the user writes a singularity-compose.yml file once:

version: "1.0"
instances:

nginx:
build:

context: ./nginx
recipe: Singularity.nginx

volumes:
- ./nginx.conf:/etc/nginx/conf.d/default.conf
- ./uwsgi_params.par:/etc/nginx/uwsgi_params.par
- ./nginx/cache:/var/cache/nginx
- ./nginx/run:/var/run

ports:
- 80:80

depends_on:
- app

volumes_from:
- app

app:
build:

context: ./app
volumes:

- ./app:/code
- ./static:/var/www/static
- ./images:/var/www/images

ports:
- 8000:8000

And then can much more readily see and reproduce generation of the same services. The user
can easily build all non-existing containers, and bring up all services with one command:

$ singularity-compose up

And then easily bring services down, restart, shell into a container, execute a command to a
container, or run a container’s internal runscript.

Sochat, (2019). Singularity Compose: Orchestration for Singularity Instances. Journal of Open Source Software, 4(40), 1578. https://doi.org/
10.21105/joss.01578

3

https://doi.org/10.21105/joss.01578
https://doi.org/10.21105/joss.01578


$ singularity-compose down # stop services
$ singularity-compose restart # stop and start services
$ singularity-compose shell app # shell into an instance
$ singularity-compose exec app "Hello!" # execute a command
$ singularity-compose run app # run internal runscript

These interactions greatly improve both reproducibility and running of any development work-
flow that is not appropriate for an enterprise cluster but relies on orchestration of container
instances.
For the interested reader, the complete documentation for Singularity Compose (Sochat,
2019a) is provided, along with the code on GitHub (Sochat, 2019b). For additional walk-
throughs and complete examples, we direct the reader to the examples repository, also on
GitHub (Sochat, 2019c). Contribution by way of additional examples, questions, or requests
for development of a new example are appreciated and welcome.

References

Docker, Inc. (2019). Docker Compose. https://docs.docker.com/compose/.
Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLoS One, 12(5), e0177459. doi:10.1371/journal.pone.0177459
Merkel, D. (2014, March). Docker: Lightweight Linux containers for consistent development
and deployment. Linux J. Houston, TX: Belltown Media.
Meyer, D. (2019, April). Sylabs slides singularity updates into its enterprise pro package. https:
//www.sdxcentral.com/articles/news/sylabs-slides-singularity-updates-into-its-enterprise-pro-package/
2019/04/.
Singularity contributors. (2019). Running services — Singularity container 3.2 documentation.
https://sylabs.io/guides/3.2/user-guide/running_services.html?highlight=instances.
Sochat, V. (2019a). Singularity-compose. https://singularityhub.github.io/singularity-compose.
Sochat, V. (2019b). Singularity compose Github. https://github.com/singularityhub/
singularity-compose.
Sochat, V. (2019c). Singularity compose examples. https://github.com/singularityhub/
singularity-compose-examples.
Wikipedia contributors. (2019, June). Kubernetes. https://en.wikipedia.org/w/index.php?
title=Kubernetes&oldid=903021989.

Sochat, (2019). Singularity Compose: Orchestration for Singularity Instances. Journal of Open Source Software, 4(40), 1578. https://doi.org/
10.21105/joss.01578

4

https://docs.docker.com/compose/
https://doi.org/10.1371/journal.pone.0177459
https://www.sdxcentral.com/articles/news/sylabs-slides-singularity-updates-into-its-enterprise-pro-package/2019/04/
https://www.sdxcentral.com/articles/news/sylabs-slides-singularity-updates-into-its-enterprise-pro-package/2019/04/
https://www.sdxcentral.com/articles/news/sylabs-slides-singularity-updates-into-its-enterprise-pro-package/2019/04/
https://sylabs.io/guides/3.2/user-guide/running_services.html?highlight=instances
https://singularityhub.github.io/singularity-compose
https://github.com/singularityhub/singularity-compose
https://github.com/singularityhub/singularity-compose
https://github.com/singularityhub/singularity-compose-examples
https://github.com/singularityhub/singularity-compose-examples
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=903021989
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=903021989
https://doi.org/10.21105/joss.01578
https://doi.org/10.21105/joss.01578

	Summary
	Singularity Compose

	References

