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Summary

Statistical modelling is used throughout the sciences. Often, statistical analyses require cus-
tom models that cannot be fitted using off-the shelf statistical software. These models can
be specified in a statistical syntax and can then be automatically fit to data using methods
such as Markov Chain monte Carlo (MCMC) and maximum likelihood. This lets users fo-
cus on the statistical nature of the model, rather than implementation details and inference
procedures. Since the development of the widely successful WinBUGS (later developed as
OpenBUGS; Spiegelhalter, Thomas, Best, & Lunn (2014)) a number of alternative software
packages for custom statistical modelling have been introduced, including JAGS, Stan, and
NIMBLE (Carpenter et al., 2017; de Valpine et al., 2017; Plummer & others, 2003). In these
software packages, users typically write out models in a domain-specific language, which is
then compiled into computational code. Though see the Python packages PyMC and Edward
(Salvatier, Wiecki, & Fonnesbeck, 2016; Tran et al., 2016) in which models are specified in
Python code.
With increasing quantities of data, complexity, and realism of statistical models that users
wish to build with these software, there is a push for software that scales better with data size
and model complexity. More recently, custom statistical modelling software has focussed on
methods such as Hamiltonian Monte Carlo (rather than Gibbs samplers) in order to improve to
computational efficiency. This can be seen for example in the development of Stan (Carpenter
et al., 2017).
greta is an package for statistical modelling in R (R Core Team, 2019) that has three core
differences to commonly used statistical modelling software packages:

1. greta models are written interactively in R code rather than in a compiled domain specific
language.

2. greta can be extended by other R packages; providing a fully-featured package manage-
ment system for extensions.

3. greta performs statistical inference using TensorFlow (Abadi et al., 2015), enabling it
to scale across modern high-performance computing systems.

greta can be used to construct both Bayesian and non-Bayesian statistical models, and perform
inference via MCMC or optimisation (for maximum likelihood or maximum a posteriori esti-
mation). The default MCMC algorithm is Hamiltonian Monte Carlo, which is generally very
efficient for Bayesian models with large numbers of parameters or highly-correlated posteriors.
The project website https://greta-stats.org/ hosts a getting started guide, worked examples
of analyses using greta, a catalogue of example models, documentation, and a user forum.
The remainder of this paper provides an example of custom statistical modelling in greta, dis-
cusses the computational implementation of greta and how it can be extended, and highlights
features that are planned for inclusion in the package.
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Example

The following illustrates a typical modelling session with greta, using a Bayesian hierarchical
model to estimate the treatment effect of epilepsy medication using data provided in the MASS
R package (Venables & Ripley (2002), distributed with R) and analysed in the corresponding
book.
Before we specify the greta model we format the data, adding a numeric version of the
treatment type and making a vector of the (8-week) baseline counts for each subject (these
counts are replicated in the epil object).

library(MASS)
epil$trt_id <- as.numeric(epil$trt)
baseline_y <- epil$base[!duplicated(epil$subject)]

Next we load greta and start building our model, starting with a random intercept model
for the baseline (log-)seizure rates, to account for the fact that each individual will have a
different seizure rate, irrespective of the treatment they receive. Variables in greta models - like
subject_mean, and baseline_effects in the below code - are represented by greta_array
objects, which have unknown values and are used to interactively build up the statistical
formulation of the model (see Implementation for details).

library(greta)

# priors
subject_mean <- normal(0, 10)
subject_sd <- cauchy(0, 1, truncation = c(0, Inf))

# hierararchical model for baseline rates (transformed to be positive)
subject_effects <- normal(subject_mean, subject_sd, dim = 59)
baseline_rates <- exp(subject_effects)

Next we build a model for the effects (the ratio of post-treatment to pre-treatment seizure
rates) of the two treatments: placebo and progabide. We give these positive-truncated normal
priors (they are multiplicative effects, so must be positive), and centre them at 1 to represent
a prior expectation of no effect. We multiply these effects by the baseline rates to get the
post-treatment rates for each observation in the dataset.

treatment_effects <- normal(1, 1, dim = 2, truncation = c(0, Inf))
post_treatment_rates <- treatment_effects[epil$trt_id] *
baseline_rates[epil$subject]

Finally we specify the distributions over the observed data. Here we use two likelihoods: one
for the baseline count (over an 8 week period) and one for each of the post-treatment counts
(over 2 week periods). We multiply our modelled weekly rates by the number of weeks the
counts represent to get the appropriate rate for that period.

# likelihood
distribution(baseline_y) <- poisson(baseline_rates * 8)
distribution(epil$y) <- poisson(post_treatment_rates * 2)

Now we can create a model object using these greta arrays, naming the parameters that we
are most interested in, and then run 4 chains of a Hamiltonian Monte Carlo sampler on the
model, taking around 25 seconds on a laptop.
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m <- model(treatment_effects, subject_sd)
draws <- mcmc(m, chains = 4)

The draws object contains posterior samples in an mcmc.list object from the coda package
(Plummer, Best, Cowles, & Vines, 2006), for which there are many packages and utilities to
summarise the posterior samples. Here we’ll use the bayesplot package (Gabry & Mahr, 2018)
to create trace plots for the parameters of interest, and the coda package to get R̂ statistics
to assess convergence of these parameters.

bayesplot::mcmc_trace(draws)

coda::gelman.diag(draws)

## Potential scale reduction factors:
##
## Point est. Upper C.I.
## treatment_effects[1,1] 1.01 1.04
## treatment_effects[2,1] 1.01 1.05
## subject_sd 1.00 1.01
##
## Multivariate psrf
##
## 1.02

We can summarise the posterior samples to get the treatment effect estimates for placebo
and progabide, the first and second elements of treatment_effects, respectively.

summary(draws)$statistics

## Mean SD Naive SE Time-series SE
## treatment_effects[1,1] 1.1211557 0.05246518 0.0008295473 0.001509931
## treatment_effects[2,1] 1.0074123 0.04566422 0.0007220147 0.001395410
## subject_sd 0.8003238 0.07867619 0.0012439797 0.001333331

These parameter estimates tell us the ratio of seizure rates during and before the treatment
period for both the drug and placebo treatments. To calculate the effect of the drug relative
to the placebo, we would take the ratio of the seizure rates between the drug treatment and
the placebo treatment. We didn’t include that term in our model, but fortunately there’s no
need to re-fit the model. greta’s calculate() function lets us compute model quantities
after model fitting.
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# create a drug effect variable and calculate posterior samples
drug_effect <- treatment_effects[2] / treatment_effects[1]
drug_effect_draws <- calculate(drug_effect, draws)
summary(drug_effect_draws)$statistics

## Mean SD Naive SE Time-series SE
## 0.9004330745 0.0574290367 0.0009080328 0.0016683350

calculate() can also be used for posterior prediction: we can reuse greta arrays for model
parameters in combination with predictor variables to make a greta array for the predicted
values of the new observations, then use calculate() to compute the posterior samples for
these predictions. This means greta can be used in a predictive modelling workflow in which
the data to predict to isn’t available before model fitting, and without having to hand-code
the predictions for all posterior samples.

Implementation

As in the example above, users of greta build up their models by creating and manipulating g
reta_array objects representing parameters of other quantities in the model. greta_arrays
behave like R’s arrays, vectors and scalars, but with unknown values. greta extends a number
of R’s mathematical functions and other operations to work with greta arrays, so users can
manipulate them as they would any other numeric object in R.
Internally, each of these greta arrays is represented by an R6 object (Chang, 2019), with
information on the greta arrays from which they were created, or which re created with
them. Together, these R6 objects constitute a directed acyclic graph (DAG), combining data,
operations, variables, and probability densities. This DAG is then used to construct a function
in TensorFlow code representing the joint density of the model. This core computational
functionality, including optimisers and MCMC samplers, is provided by the TensorFlow and
TensorFlow Probability Python packages (Abadi et al., 2015; Dillon et al., 2017), accessed
from R via the tensorflow and reticulate R packages (Allaire & Tang, 2019; Ushey, Allaire, &
Tang, 2019).

Parallelisation

Whereas most MCMC software packages enable parallelisation by running each MCMC chain
to run on a separate CPU, greta’s use of TensorFlow means it can parallelise MCMC on a
single chain across an arbitrary number of CPUs. By installing the appropriate version of
TensorFlow, greta models can also be run on Graphics Processing Units (GPUs). greta is also
integrated with the future R package (Bengtsson, 2019) for remote and parallel processing,
providing a simple interface to run inference for each chain of MCMC on a separate, remote
machine. As a consequence, inference on greta models can be scaled up to make use of
modern high-performance compute systems.

Extending greta

greta is not only designed to be extensible, but makes a deliberately distinction between the
API for users who construct statistical models using existing functionality, and developers
who add new functionality. Rather than letting users directly modify the inference target
within a model (which can be dangerous if used incorrectly), new probability distributions
and operations are created using a developer user interface, exposed via the .internals
object. Once developed in this way, it becomes simple to distribute this new functionality to

Golding, (2019). greta: simple and scalable statistical modelling in R. Journal of Open Source Software, 4(40), 1601. https://doi.org/10.
21105/joss.01601

4

https://doi.org/10.21105/joss.01601
https://doi.org/10.21105/joss.01601


other users via an R package that extends greta. Linking to the well established R package
mechanism means that greta extensions automatically come with a fully-featured package
management system, with tooling for development and distribution via CRAN or code sharing
platforms.
Whilst anyone can write and distribute their own extension package, an aim of the greta
project is to maintain a set of extension packages that meet software quality standards and
are completely interoperable, in a similar way to the ‘tidyverse’ of R packages (Wickham,
2017) for data manipulation. These packages will be hosted on both the project GitHub
organisation at https://github.com/greta-dev/ and on CRAN. There are currently a number
of extensions in prototype form hosted on the GitHub organisation, including extensions to
facilitate Gaussian process modelling (greta.gp), modelling dynamic systems (greta.dynamics)
and generalised additive modelling (greta.gam).

Future work

greta is under active development, and a range of of new features will be added to the core
package and extension packages in the near future. Two of the most significant expected
changes are the ability to perform inference on discrete-valued parameters, and to include
direct or approximate marginalisation of parameters as part of a model.

Discrete parameters

greta currently only handles models with exclusively continuous-valued parameters, since these
models are compatible with the most commonly used optimisation routines and the efficient
HMC sampler that is used by default. In the near future, greta will be extended to enable users
to perform inference on models with discrete-valued parameters as required, in combination
with the (typically less efficient) samplers with which these models are compatible.

Marginalisation

Many common statistical modelling approaches, such as hierarchical models, use unobserved
latent variables whose posterior distributions must be integrated over in order to perform infer-
ence on parameters of interest. Whilst MCMC is a general-purpose method for marginalising
these parameters, other methods are often better suited to the task in specific models. For ex-
ample where those latent variables are discrete-valued and efficient samplers cannot be used,
or when deterministic numerical approximations such as a Laplace approximation are more
computationally-efficient. A simple user interface to specifying these marginalisation schemes
within a greta model is planned. This will enable users to experiment with combinations of
different inference approaches without the need delve into nuances of implementation.
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