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Statement of Need

Linux containers have become a promising tool to increase transparency, portability, and re-
producibility of research in several domains and use cases: data science (Boettiger, 2015),
software engineering research (Cito & Gall, 2016), multi-step bioinformatics pipelines (Kim,
Ali, Lijeron, Afgan, & Krampis, 2017), standardised environments for exchangeable software
(Belmann et al., 2015), computational archaeology (Marwick, 2017), packaging algorithms
(Hosny, Vera-Licona, Laubenbacher, & Favre, 2016), or geographic object-based image anal-
ysis (Knoth & Nüst, 2017). Running an analysis in a container increases reliability of a
workflow, as it can execute packaged code independently of the author’s computer and its
available configurations and dependencies. However, capturing a computational environment
in containers can be complex, making container use difficult for domain scientists with limited
programming experience. containerit opens up the advantages of containerisation to a
much larger user base by assisting researchers, who are unfamiliar with Linux, command lines
or containerisation, in packaging workflows based on R (R Core Team, 2018) in container
images by using only user-friendly R commands.
Recently containerisation took off as a technology for packaging applications and their depen-
dencies for fast, scalable, and secure sandboxed deployments in cloud-based infrastructures
(cf. Osnat, 2018). The most widely used containerisation software is Docker with the follow-
ing core building blocks (cf. Docker: Get Started): The image is built from the instructions
in a recipe called Dockerfile. The image is executed as a container using a container
runtime. An image can be moved between systems as a file (image tarball) or based on an
image registry. A Dockerfile may use the image created by another Dockerfile as the
starting point, a so-called base image. While containers can be manually altered, the common
practice is to conduct all configurations with the scripts and instructions originating in the
Dockerfile.
An important advantage of containers over virtual machines is that their duality between recipe
and image provides and additional layer of transparency and safeguarding. The Dockerfile
and image can be published alongside a scientific paper to support peer review and, to some
extent, preserve the original results (Nüst et al., 2017). Even if an image cannot be executed
or a Dockerfile can no longer be built, the instructions in the Dockerfile are human-
readable, and files in the image can be extracted to recreate an environment that closely
resembles the original. Further useful features are (a) portability, thanks to a single runtime
dependency, which allows readers to explore an author’s virtual laboratory, including complex
dependencies or custom-made code, either on their machines or in cloud-based infrastructures
(e.g., by using Binder, see Project Jupyter et al., 2018), and (b) transparency, because an
image’s filesystem can be easily inspected. This way, containers can enable verification of
reproducibility and auditing without requiring reviewers to manually download, install, and
re-run analyses (Beaulieu-Jones & Greene, 2017).
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Container preservation is an active field of research (Emsley & De Roure, 2018; Rechert et al.,
2017). It is reasonable to assume that key stakeholders interested in workflow preservation,
such as universities or scientific publishers, should be able to operate container runtimes on a
time scale comparable to data storage requirements by funding agencies, e.g., 10 years in case
of the German DFG or British EPSRC. To enable and leverage the stakeholders’ infrastructure,
container creation must become easier and more widespread.

Summary

The package containerit automates the generation of Dockerfiles for workflows in R,
based on images by the Rocker project (Boettiger & Eddelbuettel, 2017). The core feature
of containerit is that it transforms the local session information into a set of instructions
which can be serialised as a Dockerfile, as shown in the code snippet below:

> suppressPackageStartupMessages(library("containerit"))
> my_dockerfile <- containerit::dockerfile(from = utils::sessionInfo())
> print(my_dockerfile)
FROM rocker/r-ver:3.5.2
LABEL maintainer="daniel"
RUN export DEBIAN_FRONTEND=noninteractive; apt-get -y update \

&& apt-get install -y git-core \
libcurl4-openssl-dev \
libssl-dev \
pandoc \
pandoc-citeproc

RUN ["install2.r", "curl", "digest", "evaluate", "formatR", \
"futile.logger", "futile.options", "htmltools", "jsonlite", \
"knitr", "lambda.r", "magrittr", "Rcpp", "rjson", \
"rmarkdown", "rsconnect", "semver", "stevedore", "stringi", \
"stringr", "xfun", "yaml"]

WORKDIR /payload/
CMD ["R"]

The created Dockerfile has installation instructions for the loaded packages and their sys-
tem dependencies. It uses the r-ver stack of Rocker images, matching the R version to
the environment encountered locally by containerit. These images use MRAN snapshots
to control installed R package versions in a reproducible way. The system dependencies re-
quired by these packages are identified using the sysreqs package (Csardi, 2019) and the
corresponding database and API.
dockerfile(..) is the package’s main user function and accepts session information objects,
session information saved in a file, a set of R commands, an R script file, a DESCRIPTION
file, or an R Markdown document (Allaire et al., 2018). Static program analysis using the
package automagic (Brokamp, 2017) is used to increase the chances that the capturing
environment has all required packages available, such as when creating Dockerfiles for R
Markdown documents as a service (Nüst, 2018). To capture the workflow environment,
containerit executes the whole workflow in a new R session using the package callr
(Csárdi & Chang, 2018), because static program analysis can be broken by using helper
functions, such as xfun::pkg_attach() (Xie, 2018), by unintended side effects, or by
seemingly clever or user-friendly yet customised ways of loeading packages (cf. first lines in R
script file tgis_a_1579333_sm7524.r in https://doi.org/10.6084/m9.figshare.7757069.v1).
Further parameters for the function comprise, for example, image metadata, base image,
versioned installations, and filtering of R packages already installed in the base image.

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

2

http://www.dfg.de/en/research_funding/proposal_review_decision/applicants/research_data/index.html
https://epsrc.ukri.org/about/standards/researchdata/expectations/
https://www.rocker-project.org/
https://mran.microsoft.com/
http://sysreqs.r-hub.io/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://en.wikipedia.org/wiki/Static_program_analysis
https://doi.org/10.6084/m9.figshare.7757069.v1
https://doi.org/10.21105/joss.01603


The package containerit‘s main contribution is that it allows for automated capturing of
runtime environments as Dockerfiles based on literate programming workflows (Gentleman
& Lang, 2007) to support reproducible research. Together with stevedore (FitzJohn, 2019),
containerit enables a completely R-based creation and manipulation of Docker containers.
Using containerit only minimally affects researchers’ workflows because it can be applied
after completing a workflow, while at the same time the captured snapshots can enhance
the scholarly publication process (in particular review, interaction, and preservation) and may
form a basis for more reusable and transparent publications. In the future, containerit
may support alternative container software such as Singularity (Kurtzer, Sochat, & Bauer,
2017), enable parametrisation of container executions and pipelines as demonstrated by Kliko
(Molenaar, Makhathini, Girard, & Smirnov, 2018), or support proper accreditation of software
(Jones et al., 2017; D. S. Katz & Chue Hong, 2018).
Related Work
renv is an R package for managing reproducible environments for R providing isolation,
portability, and pinned versions of R packages, but it does not handle system dependencies.
The Experiment Factory similarly focuses on ease of use for creating Dockerfiles for be-
havioural experiments, yet it uses a CLI-based interaction and generates extra shell scripts to
be included in the images. ReproZip (Chirigati, Rampin, Shasha, & Freire, 2016) packages
files identified by tracing in a self-contained bundle, which can be unpacked to a Docker
container/Dockerfile. In the R domain, the package dockerfiler (Fay, 2018) provides
an object-oriented API for manual Dockerfile creation, and liftr (Xiao, 2018) creates a
Dockerfile based on fields added to the metadata header of an R Markdown document.
automagic (Brokamp, 2017), Whales, dockter, and repo2docker use static program anal-
ysis to create environment descriptions from common project configuration files for multiple
programming languages. Namely, automagic analyses R code and can store dependen-
cies in a bespoke YAML format. Whales and dockter provide different formats, including
Dockerfile. Finally, repo2docker primarily creates containers for interactive notebooks to
run as a Binder (Project Jupyter et al., 2018) but does not actively expose a Dockerfile.
None of them apply the strict code execution approach as containerit does.
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