
containerit: Generating Dockerfiles for reproducible
research with R
Daniel Nüst1 and Matthias Hinz2

1 Institute for Geoinformatics, University of Münster, Germany 2 Professorship for Geoinformatics
and Geodesy, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany

DOI: 10.21105/joss.01603

Software
• Review
• Repository
• Archive

Submitted: 25 July 2019
Published: 21 August 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Statement of Need

Linux containers have become a promising tool to increase transparency, portability, and re-
producibility of research in several domains and use cases: data science (Boettiger, 2015),
software engineering research (Cito & Gall, 2016), multi-step bioinformatics pipelines (Kim,
Ali, Lijeron, Afgan, & Krampis, 2017), standardised environments for exchangeable software
(Belmann et al., 2015), computational archaeology (Marwick, 2017), packaging algorithms
(Hosny, Vera-Licona, Laubenbacher, & Favre, 2016), or geographic object-based image anal-
ysis (Knoth & Nüst, 2017). Running an analysis in a container increases reliability of a
workflow, as it can execute packaged code independently of the author’s computer and its
available configurations and dependencies. However, capturing a computational environment
in containers can be complex, making container use difficult for domain scientists with limited
programming experience. containerit opens up the advantages of containerisation to a
much larger user base by assisting researchers, who are unfamiliar with Linux, command lines
or containerisation, in packaging workflows based on R (R Core Team, 2018) in container
images by using only user-friendly R commands.
Recently containerisation took off as a technology for packaging applications and their depen-
dencies for fast, scalable, and secure sandboxed deployments in cloud-based infrastructures
(cf. Osnat, 2018). The most widely used containerisation software is Docker with the follow-
ing core building blocks (cf. Docker: Get Started): The image is built from the instructions
in a recipe called Dockerfile. The image is executed as a container using a container
runtime. An image can be moved between systems as a file (image tarball) or based on an
image registry. A Dockerfile may use the image created by another Dockerfile as the
starting point, a so-called base image. While containers can be manually altered, the common
practice is to conduct all configurations with the scripts and instructions originating in the
Dockerfile.
An important advantage of containers over virtual machines is that their duality between recipe
and image provides and additional layer of transparency and safeguarding. The Dockerfile
and image can be published alongside a scientific paper to support peer review and, to some
extent, preserve the original results (Nüst et al., 2017). Even if an image cannot be executed
or a Dockerfile can no longer be built, the instructions in the Dockerfile are human-
readable, and files in the image can be extracted to recreate an environment that closely
resembles the original. Further useful features are (a) portability, thanks to a single runtime
dependency, which allows readers to explore an author’s virtual laboratory, including complex
dependencies or custom-made code, either on their machines or in cloud-based infrastructures
(e.g., by using Binder, see Project Jupyter et al., 2018), and (b) transparency, because an
image’s filesystem can be easily inspected. This way, containers can enable verification of
reproducibility and auditing without requiring reviewers to manually download, install, and
re-run analyses (Beaulieu-Jones & Greene, 2017).

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

1

https://doi.org/10.21105/joss.01603
https://github.com/openjournals/joss-reviews/issues/1603
https://github.com/o2r-project/containerit/
https://doi.org/10.5281/zenodo.3373289
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Sandbox_%28computer_security%29
https://en.wikipedia.org/wiki/Docker_%28software%29
https://docs.docker.com/get-started/
https://en.wikipedia.org/wiki/Virtual_machine
https://doi.org/10.21105/joss.01603


Container preservation is an active field of research (Emsley & De Roure, 2018; Rechert et al.,
2017). It is reasonable to assume that key stakeholders interested in workflow preservation,
such as universities or scientific publishers, should be able to operate container runtimes on a
time scale comparable to data storage requirements by funding agencies, e.g., 10 years in case
of the German DFG or British EPSRC. To enable and leverage the stakeholders’ infrastructure,
container creation must become easier and more widespread.

Summary

The package containerit automates the generation of Dockerfiles for workflows in R,
based on images by the Rocker project (Boettiger & Eddelbuettel, 2017). The core feature
of containerit is that it transforms the local session information into a set of instructions
which can be serialised as a Dockerfile, as shown in the code snippet below:

> suppressPackageStartupMessages(library("containerit"))
> my_dockerfile <- containerit::dockerfile(from = utils::sessionInfo())
> print(my_dockerfile)
FROM rocker/r-ver:3.5.2
LABEL maintainer="daniel"
RUN export DEBIAN_FRONTEND=noninteractive; apt-get -y update \

&& apt-get install -y git-core \
libcurl4-openssl-dev \
libssl-dev \
pandoc \
pandoc-citeproc

RUN ["install2.r", "curl", "digest", "evaluate", "formatR", \
"futile.logger", "futile.options", "htmltools", "jsonlite", \
"knitr", "lambda.r", "magrittr", "Rcpp", "rjson", \
"rmarkdown", "rsconnect", "semver", "stevedore", "stringi", \
"stringr", "xfun", "yaml"]

WORKDIR /payload/
CMD ["R"]

The created Dockerfile has installation instructions for the loaded packages and their sys-
tem dependencies. It uses the r-ver stack of Rocker images, matching the R version to
the environment encountered locally by containerit. These images use MRAN snapshots
to control installed R package versions in a reproducible way. The system dependencies re-
quired by these packages are identified using the sysreqs package (Csardi, 2019) and the
corresponding database and API.
dockerfile(..) is the package’s main user function and accepts session information objects,
session information saved in a file, a set of R commands, an R script file, a DESCRIPTION
file, or an R Markdown document (Allaire et al., 2018). Static program analysis using the
package automagic (Brokamp, 2017) is used to increase the chances that the capturing
environment has all required packages available, such as when creating Dockerfiles for R
Markdown documents as a service (Nüst, 2018). To capture the workflow environment,
containerit executes the whole workflow in a new R session using the package callr
(Csárdi & Chang, 2018), because static program analysis can be broken by using helper
functions, such as xfun::pkg_attach() (Xie, 2018), by unintended side effects, or by
seemingly clever or user-friendly yet customised ways of loeading packages (cf. first lines in R
script file tgis_a_1579333_sm7524.r in https://doi.org/10.6084/m9.figshare.7757069.v1).
Further parameters for the function comprise, for example, image metadata, base image,
versioned installations, and filtering of R packages already installed in the base image.

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

2

http://www.dfg.de/en/research_funding/proposal_review_decision/applicants/research_data/index.html
https://epsrc.ukri.org/about/standards/researchdata/expectations/
https://www.rocker-project.org/
https://mran.microsoft.com/
http://sysreqs.r-hub.io/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://en.wikipedia.org/wiki/Static_program_analysis
https://doi.org/10.6084/m9.figshare.7757069.v1
https://doi.org/10.21105/joss.01603


The package containerit‘s main contribution is that it allows for automated capturing of
runtime environments as Dockerfiles based on literate programming workflows (Gentleman
& Lang, 2007) to support reproducible research. Together with stevedore (FitzJohn, 2019),
containerit enables a completely R-based creation and manipulation of Docker containers.
Using containerit only minimally affects researchers’ workflows because it can be applied
after completing a workflow, while at the same time the captured snapshots can enhance
the scholarly publication process (in particular review, interaction, and preservation) and may
form a basis for more reusable and transparent publications. In the future, containerit
may support alternative container software such as Singularity (Kurtzer, Sochat, & Bauer,
2017), enable parametrisation of container executions and pipelines as demonstrated by Kliko
(Molenaar, Makhathini, Girard, & Smirnov, 2018), or support proper accreditation of software
(Jones et al., 2017; D. S. Katz & Chue Hong, 2018).
Related Work
renv is an R package for managing reproducible environments for R providing isolation,
portability, and pinned versions of R packages, but it does not handle system dependencies.
The Experiment Factory similarly focuses on ease of use for creating Dockerfiles for be-
havioural experiments, yet it uses a CLI-based interaction and generates extra shell scripts to
be included in the images. ReproZip (Chirigati, Rampin, Shasha, & Freire, 2016) packages
files identified by tracing in a self-contained bundle, which can be unpacked to a Docker
container/Dockerfile. In the R domain, the package dockerfiler (Fay, 2018) provides
an object-oriented API for manual Dockerfile creation, and liftr (Xiao, 2018) creates a
Dockerfile based on fields added to the metadata header of an R Markdown document.
automagic (Brokamp, 2017), Whales, dockter, and repo2docker use static program anal-
ysis to create environment descriptions from common project configuration files for multiple
programming languages. Namely, automagic analyses R code and can store dependen-
cies in a bespoke YAML format. Whales and dockter provide different formats, including
Dockerfile. Finally, repo2docker primarily creates containers for interactive notebooks to
run as a Binder (Project Jupyter et al., 2018) but does not actively expose a Dockerfile.
None of them apply the strict code execution approach as containerit does.

Acknowledgements

This work is supported by the project Opening Reproducible Research (Offene Reproduzierbare
Forschung) funded by the German Research Foundation (DFG) under project numbers PE 1
632/10-1 and 1632/17-1.

References

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., et al.
(2018). rmarkdown: Dynamic documents for R. Retrieved from https://rmarkdown.rstudio.
com
Beaulieu-Jones, B. K., & Greene, C. S. (2017). Reproducibility of computational workflows
is automated using continuous analysis. Nature Biotechnology, advance online publication.
doi:10.1038/nbt.3780
Belmann, P., Dröge, J., Bremges, A., McHardy, A. C., Sczyrba, A., & Barton, M. D. (2015).
Bioboxes: Standardised containers for interchangeable bioinformatics software. GigaScience,
4(1), 47. doi:10.1186/s13742-015-0087-0
Boettiger, C. (2015). An introduction to Docker for reproducible research, with examples
from the R environment. ACM SIGOPS Operating Systems Review, 49(1), 71–79. doi:10.
1145/2723872.2723882

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

3

https://github.com/rstudio/renv/
https://expfactory.github.io/
https://www.reprozip.org/
https://en.wikipedia.org/wiki/Tracing_(software)
https://github.com/Gueils/whales
https://github.com/stencila/dockter/
https://github.com/jupyter/repo2docker
https://en.wikipedia.org/wiki/YAML
https://o2r.info
https://www.uni-muenster.de/forschungaz/project/9520
https://www.uni-muenster.de/forschungaz/project/9520
http://dfg.de/
https://rmarkdown.rstudio.com
https://rmarkdown.rstudio.com
https://doi.org/10.1038/nbt.3780
https://doi.org/10.1186/s13742-015-0087-0
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.21105/joss.01603


Boettiger, C., & Eddelbuettel, D. (2017). An Introduction to Rocker: Docker Containers for
R. The R Journal, 9(2), 527–536. doi:10.32614/RJ-2017-065
Brokamp, C. (2017). Automagic: Automagically document and install packages necessary to
run R code. Retrieved from https://CRAN.R-project.org/package=automagic
Chirigati, F., Rampin, R., Shasha, D., & Freire, J. (2016). ReproZip: Computational re-
producibility with ease. In Proceedings of the 2016 international conference on manage-
ment of data, SIGMOD ’16 (pp. 2085–2088). San Francisco, California, USA: ACM.
doi:10.1145/2882903.2899401
Cito, J., & Gall, H. C. (2016). Using Docker Containers to Improve Reproducibility in Soft-
ware Engineering Research. In Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16 (pp. 906–907). ACM. doi:10.1145/2889160.2891057
Csardi, G. (2019). Sysreqs: Install systemrequirements of packages. Retrieved from https:
//github.com/r-hub/sysreqs
Csárdi, G., & Chang, W. (2018). Callr: Call R from R. Retrieved from https://CRAN.
R-project.org/package=callr
Emsley, I., & De Roure, D. (2018). A Framework for the Preservation of a Docker Container
International Journal of Digital Curation. International Journal of Digital Curation, 12(2).
doi:10.2218/ijdc.v12i2.509
Fay, C. (2018). Dockerfiler: Easy Dockerfile creation from R. Retrieved from https://CRAN.
R-project.org/package=dockerfiler
FitzJohn, R. (2019). Stevedore: Docker client. Retrieved from https://CRAN.R-project.org/
package=stevedore
Gentleman, R., & Lang, D. T. (2007). Statistical Analyses and Reproducible Research. Jour-
nal of Computational and Graphical Statistics, 16(1), 1–23. doi:10.1198/106186007X178663
Hosny, A., Vera-Licona, P., Laubenbacher, R., & Favre, T. (2016). AlgoRun: A Docker-based
packaging system for platform-agnostic implemented algorithms. Bioinformatics, 32(15),
2396–2398. doi:10.1093/bioinformatics/btw120
Jones, M. B., Boettiger, C., Mayes, A. C., Arfon Smith, Slaughter, P., Niemeyer, K., Gil, Y.,
et al. (2017). CodeMeta: An exchange schema for software metadata. KNB Data Repository.
doi:10.5063/schema/codemeta-2.0
Katz, D. S., & Chue Hong, N. P. (2018). Software Citation in Theory and Practice. In J.
H. Davenport, M. Kauers, G. Labahn, & J. Urban (Eds.), Mathematical Software – ICMS
2018, Lecture Notes in Computer Science (pp. 289–296). Springer International Publishing.
doi:10.1007/978-3-319-96418-8_34
Kim, B., Ali, T. A., Lijeron, C., Afgan, E., & Krampis, K. (2017). Bio-Docklets: Virtualization
Containers for Single-Step Execution of NGS Pipelines. bioRxiv, 116962. doi:10.1101/116962
Knoth, C., & Nüst, D. (2017). Reproducibility and Practical Adoption of GEOBIA with Open-
Source Software in Docker Containers. Remote Sensing, 9(3), 290. doi:10.3390/rs9030290
Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLOS ONE, 12(5), e0177459. doi:10.1371/journal.pone.0177459
Marwick, B. (2017). Computational Reproducibility in Archaeological Research: Basic Prin-
ciples and a Case Study of Their Implementation. Journal of Archaeological Method and
Theory, 24(2), 424–450. doi:10.1007/s10816-015-9272-9
Molenaar, G., Makhathini, S., Girard, J. N., & Smirnov, O. (2018). Kliko—The scientific
compute container format. Astronomy and Computing, 25, 1–9. doi:10.1016/j.ascom.2018.
08.003

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

4

https://doi.org/10.32614/RJ-2017-065
https://CRAN.R-project.org/package=automagic
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2889160.2891057
https://github.com/r-hub/sysreqs
https://github.com/r-hub/sysreqs
https://CRAN.R-project.org/package=callr
https://CRAN.R-project.org/package=callr
https://doi.org/10.2218/ijdc.v12i2.509
https://CRAN.R-project.org/package=dockerfiler
https://CRAN.R-project.org/package=dockerfiler
https://CRAN.R-project.org/package=stevedore
https://CRAN.R-project.org/package=stevedore
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1093/bioinformatics/btw120
https://doi.org/10.5063/schema/codemeta-2.0
https://doi.org/10.1007/978-3-319-96418-8_34
https://doi.org/10.1101/116962
https://doi.org/10.3390/rs9030290
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1007/s10816-015-9272-9
https://doi.org/10.1016/j.ascom.2018.08.003
https://doi.org/10.1016/j.ascom.2018.08.003
https://doi.org/10.21105/joss.01603


Nüst, D. (2018, December). Reproducibility Service for Executable Research Compendia:
Technical Specifications and Reference Implementation. Zenodo. doi:10.5281/zenodo.
2203844
Nüst, D., Konkol, M., Pebesma, E., Kray, C., Schutzeichel, M., Przibytzin, H., & Lorenz,
J. (2017). Opening the Publication Process with Executable Research Compendia. D-Lib
Magazine, 23(1/2). doi:10.1045/january2017-nuest
Osnat, R. (2018, March). A Brief History of Containers: From the 1970s to 2017. Retrieved
from https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
Project Jupyter et al. (2018). Binder 2.0 - reproducible, interactive, sharable environments
for science at scale. In Proceedings of the 17th python in science conference. doi:10.25080/
Majora-4af1f417-011
R Core Team. (2018). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rechert, K., Liebetraut, T., Kombrink, S., Wehrle, D., Mocken, S., & Rohland, M. (2017).
Preserving Containers. In J. Kratzke & V. Heuveline (Eds.), Forschungsdaten managen (pp.
143–151). doi:10.11588/heibooks.285.377
Xiao, N. (2018). Liftr: Containerize R Markdown documents for continuous reproducibility.
Retrieved from https://CRAN.R-project.org/package=liftr
Xie, Y. (2018). Xfun: Miscellaneous functions by ’Yihui Xie’. Retrieved from https://CRAN.
R-project.org/package=xfun

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

5

https://doi.org/10.5281/zenodo.2203844
https://doi.org/10.5281/zenodo.2203844
https://doi.org/10.1045/january2017-nuest
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://www.R-project.org/
https://doi.org/10.11588/heibooks.285.377
https://CRAN.R-project.org/package=liftr
https://CRAN.R-project.org/package=xfun
https://CRAN.R-project.org/package=xfun
https://doi.org/10.21105/joss.01603

	Statement of Need
	Summary
	Acknowledgements
	References

