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Summary

This paper introduces infotheory: a package written in C++ and usable from Python and
C++, for multivariate information theoretic analyses of discrete and continuous data. It is
open-source (https://git.io/infot) and details on how to install it and use it are available
on its website. This package allows the user to study the relationship between components
of a complex system simply from the data recorded during its operation, using the tools of
information theory. Specifically, this package enables the measurement of entropy and mutual
information, and also allows the user to perform partial information decomposition of mutual
information into unique, redundant, and synergistic information quantities.

Background

Information theory was first introduced by Claude Shannon in his seminal paper “A mathemati-
cal theory of communication” as a methodology to develop efficient coding and communication
of data across noisy channels (Shannon, 1948). lts popularity can be primarily attributed to
its ability to be applied in any domain, ranging from Economics to Neuroscience. Informa-
tion theory provides a general framework to quantify stochastic properties (uncertainty in the
outcome of an experiment) and relationships (mutual information that one variable provides
about another) between different variables in a system of interest. It provides tools to measure
these quantities in a way that is invariant to the scale of the system and allows comparison
across systems.

Statement of need

Until relatively recently, information theory had been employed to study n-dimensional mul-
tivariate systems two variables at a time (bivariate). However, all natural systems are multi-
variate and a scientific inquiry into their operation requires understanding how these multiple
variables interact. In a multivariate system, bivariate measures such as pairwise mutual in-
formation alone are insufficient to capture the polyadic interactions between the different
variables (James & Crutchfield, 2017). Partial Information Decomposition (PID) is an exten-
sion of Shanon information measures that allows us to study the interaction between variables
in a multivariate system by decomposing the total information that multiple source variables
provide about a target variable into its constituent non-negative components (Williams &
Beer, 2010). More specifically, in a trivariate case, the three variables can be separated into
one target and two source variables. The total information that the two sources have about
the target is given by the bivariate mutual information between the concatenated sources as
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one variable and the target. Using PID, the dependencies between the sources can be studied
by decomposing this total information into the following non-negative components: informa-
tion that each source uniquely provides about the target, information that they redundantly
provide, and the synergistic information that is only available when both sources are known.
There have been multiple approaches proposed to perform said decomposition (Bertschinger,
Rauh, Olbrich, Jost, & Ay, 2014; Griffith & Koch, 2014; R. G. James et al., 2018b; Williams
& Beer, 2010). Here we focus on the approach proposed by (Williams & Beer, 2010) primarily
because this package implements PID for two and three source decomposition, and as of now,
this is the only approach that guarantees non-negative decomposition for the four variable case
(one target and three sources). Multivariate analysis allows us to ask more detailed questions
such as, what is the amount of information that is uniquely provided about a target random
variable by one source and not another? and what is the amount of information that is trans-
ferred from one random process X to another Y over and above Y's own information from its
past? These questions enable us to understand the interactions between different components
of a complex system, thereby leading us towards an understanding of its operation given just
the observed data from the system.

Features

infotheory implements widely used measures such as entropy and mutual information (Cover
& Thomas, 2012), as well as more recent measures that arise from multivariate extensions
to information theory. As such, the tool has been designed to be easy to use and is ideal for
pedagogical demonstrations of information theory as well as in research. Here, we highlight
seven key aspects of its implementation that make our package a valuable addition to any
information theoretic analyses tools set. First, the package is written in C++. One of
the main challenges of multivariate analyses on a large, complex system is the amount of
computations involved. Implementation in C++4 makes the package efficient. Second, the
package can be used from either C++ or Python. Python wrapping allows for ease of use,
as well as compatibility with other powerful open-source libraries such as numpy. Third, the
API allows adding the data only once to then perform various analyses across different sub-
spaces of the dataset cheaply. Fourth, a custom sparse data structure is used to represent the
random variables. This allows the package to work easily with large amounts of data. Fifth,
to better estimate the data distribution in case of continuous variables, the package employs
a kernel-based density estimation method called ‘averaged shifted histograms’ because of its
beneficial trade-off between computational and statistical efficiency (Scott, 1985). Sixth, the
package includes user-controllable specification of binning. This is essential for estimating
distributions on hybrid systems with a mix of continuous and discrete variables. Finally, this
package implements decomposition of information in three as well as four variable systems,
making it unique among related existing packages.

One of the major challenges in utilizing information theoretic measures in experimental set-
tings is the availability of sufficient data to infer the data distributions correctly (Paninski,
2003). To estimate data distribution from limited data, we have employed average shifted
histograms for its beneficial trade-off between statistical and computational efficiency (Scott,
1985). This involves discretizing the data space into a number of bins and estimating fre-
quentist probabilities based on the bins occupied by data samples. To reduce the impact
of arbitrarily chosen bin boundaries, the data distribution is estimated by averaging the bin
occupancies across multiple shifted binnings of the data space. This binning-based estimator
has been shown to approximate a triangle kernel estimator (Scott, 1985). While the binning
provides significant computational advantages, its approximation errors must be considered.
Bias properties and guidelines for choosing the parameters for average shifted histograms are
given in (Scott, 1979, 1985, p. @fernando2009selection, 2012). For a moderate sample size,
five to 10 shifted histograms has been shown to be adequate (Scott, 1985). In general, aver-
age shifted histograms are best suited for noisy continuous data where the distribution of the
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data is unknown. For a more involved discussion on density estimation and its bias properties,
we point the reader to (Scott & Terrell, 1987) and (Wand & Jones, 1994).

Two existing packages that are most similar to ours are dit (R. G. James et al., 2018a) and
IDTxL (Wollstadt et al., 2019). Unlike dit, our package can also help analyze continuous-
valued data and unlike dit and IDTxL we have implemented PID analysis of four variables:
three sources and one target. Other notable packages include: pyentropy (Ince, Bartolozzi, &
Panzeri, n.d.), which was primarily designed for estimating entropies; and JDIT (Lizier, 2014),
which was primarily designed for measuring transfer entropy. Neither pyentropy nor JDIT
implement PID measures, although authors of JDIT have an unpublished GitHub repository
that has a Java implementation of PID called JPID. In comparison with these existing packages
and their functionality, our package primarily focuses on measuring multivariate informational
quantities on continuous data where the data distribution is not known a priori. However, it
can still be used with discrete data using the same methods.

The functions implementing the above-mentioned information theoretic measures have been
designed to be flexibly used in alternative ways. For instance, the decomposed information
components can be combined to measure transfer entropy (Schreiber, 2000). When dealing
with time-series data, one can restructure the data such that the two sources are past values
of two random variables, and the target is a future value of one of them. It has been shown
that the sum of the unique information that a source provides about the target (future value)
and the synergistic information from both sources is equal to the amount of information
transferred from that source (Williams & Beer, 2011). Transfer entropy is used extensively
in neuroscience to infer directed functional connections between nodes of a network (nodes
can be neurons, brain regions or EEG electrodes) from recorded data (Wibral, Vicente, &
Lindner, 2014). Another instance of extended use of this package is to measure changes
in information in time. Again, with time-series data, if the user provides all data over all
time points, then they can ask the tool to calculate all the previously discussed measures
as aggregate values over time. Alternatively, the user can provide data that are only from
a specific time point, calculate the information theoretic measures for that time point, and
then repeat the analyses over the entire time course. Such analysis reveals how information
in the variables of the system change dynamically during the course of its operation (Beer
& Williams, 2015; Izquierdo, Williams, & Beer, 2015). Both extensions are easily accessible
by reusing the existing mutual information and PID functions in the package and providing
different subsets of the data accordingly.

Conclusion

Altogether, infotheory provides an easy-to-use and flexible tool for performing information
theoretic analyses on any multivariate dataset consisting of discrete or continuous data. Ap-
plication areas are, in principle, as wide as that of information theory's - any domain that
has a multivariate system and aims to study how the different components interact. We
are particularly encouraged by the potential applications in neuroscience, at all scales ranging
from individual neurons to brain regions to integrated brain-body-environment systems. In our
group, we are currently using this package to understand the flow of information in simulated
neural circuits capable of producing behavior. This tool allows us to easily analyze how dif-
ferent neurons of a circuit or regions in the brain are encoding information about the sensory
stimulus it is receiving, the actions it is producing, or indeed about other neurons/regions
within the system itself. We are using multivariate measures to analyze how different nodes
in the circuit encode information uniquely, redundantly, and synergistically about a signal of
interest. We are using the tool to study information dynamics of the neural circuit over time
during behavior. We are also using it to infer directed functional connections between the
nodes of the network. Besides its use in research, we are using this package for pedagogical
purposes to introduce students to information theory. As such, we have provided a number
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of benchmarks and examples in the website. We also hope to continue to extend the package
in the future by, for example, implementing additional approaches to multivariate information
analyses, and providing GPU-support. Finally, in the spirit of free and open-source software
development, we also welcome contributions from others.
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