
openEyeTrack - A high speed multi-threaded eye tracker
for head-fixed applications
Jorge Paolo Casas1 and Chandramouli Chandrasekaran2, 3, 4

1 Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA 2
Department of Anatomy and Neurobiology, Boston University, Boston, MA 02118, USA 3
Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA 4
Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA

DOI: 10.21105/joss.01631

Software
• Review
• Repository
• Archive

Submitted: 26 July 2019
Published: 23 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Statement of Need

When faced with a decision, an organism uses information gathered by its senses in order to
determine the best course of action. Vision is one of the primary senses, and tracking eye
gaze can offer insight into the cues that affect decision-making behavior. Thus, to study
decision-making and other cognitive processes, it is fundamentally necessary to track eye
position accurately. However, commercial eye trackers are often very expensive, and incorpo-
rate proprietary software to detect the movement of the eye. Closed source solutions limit
the researcher’s ability to be fully informed regarding the algorithms used to track the eye
and to incorporate modifications tailored to their needs. Here, we present our software solu-
tion, openEyeTrack, a low-cost, high-speed, low-latency, open-source video-based eye tracker.
Video-based eye trackers can perform nearly as well as classical scleral search coil methods
and are suitable for most applications (Kimmel, Mammo, & Newsome, 2012). High-speed
eye trackers improve ability to detect saccades and microsaccades for real-time behavioral and
physiological experiments and also improve eye position estimation.
Planned Use Cases: We expect to incorporate openEyeTrack in research concerning the
neural dynamics of cognition, decision-making, and motor-control conducted at the Chan-
drasekaran Lab and in labs performing human psychophysics experiments at Boston University.
We also anticipate performing additional tests of openEyeTrack in experiments at the Zimmer-
man Lab at the University of Minnesota. These experiments will further validate openEyeTrack,
help identify necessary enhancements, and provide additional performance metrics.

Software and Hardware components

openEyeTrack is a video-based eye-tracker that takes advantage of OpenCV (Bradski &
Kaehler, 2016; OpenCV, 2019a, 2019b), a low-cost, high-speed infrared camera and GigE-
V APIs for Linux provided by Teledyne DALSA (Teledyne DALSA, 2018), the graphical user
interface toolkit QT5 (The Qt Company Ltd., 2013) and cvui, the OpenCV based GUI (Bevilac-
qua, 2018). All of the software components are freely available. The only costs are from the
hardware components such as the camera (Genie Nano M640 NIR, Teledyne DALSA, ~$450,
~730 frames per second) and infrared light source, an articulated arm to position the camera
(Manfrotto: $130), a computer with one or more gigabit network interface cards, and a power
over ethernet switch to power and receive data from the camera.
By using the GigE-V Framework to capture the frames from the DALSA camera and the
OpenCV simple blob detector, openEyeTrack can accurately estimate the position and area
of the pupil. We include pupil size calculations because of its putative link to arousal levels
and emotions of the subject (Võ et al., 2008).

Casas et al., (2019). openEyeTrack - A high speed multi-threaded eye tracker for head-fixed applications. Journal of Open Source Software,
4(42), 1631. https://doi.org/10.21105/joss.01631

1

https://doi.org/10.21105/joss.01631
https://github.com/openjournals/joss-reviews/issues/1631
https://github.com/chand-lab/openEyeTrack
https://doi.org/10.5281/zenodo.3515534
http://creativecommons.org/licenses/by/4.0/
https://www.teledynedalsa.com/en/products/imaging/cameras/genie-nano-1gige/
https://doi.org/10.21105/joss.01631

Multithreading provides improvements over existing open source solutions

openEyeTrack is modeled on other open-source eye trackers currently available such as “Ocu-
lomatic” (Zimmermann, Vazquez, Glimcher, Pesaran, & Louie, 2016). However, most of
these programs are single-threaded: the frames are captured, analyzed, and displayed se-
quentially, only executing the next stage once the previous stage completes its processing.
Although single-threaded methods have become more effective over the years, these stages
are time-consuming and can limit the overall performance. In order to increase performance,
openEyeTrack was developed as a multithreaded application. The capture, display, data trans-
mission, and most importantly, pupil detection components all happen within their separate
threads. By incorporating multiple threads, the processing speed of the frames can match the
frame capture rate of the camera, allowing for the lossless processing of data.

Algorithm

Figure 1 shows the workflow for openEyeTrack. As frames transition between the capture,
detection, and display stages, they are stored in queues which enable the separate stages
to run independently and allow for asynchronous capture, detection, and display. Once the
camera grabs a new frame, it is briefly stored in the Genicam memory buffers before being
extracted and packaged by the “capture thread” into a struct and stored in a queue. This
approach ensures that the sequence of acquisition frames is preserved and that the frame
acquisition process can occur without being slowed down by the pupil detection process or
display related processes. The frames in the “capture queue” are then popped off by the
“n” (user-specified) detection thread(s). Each “detection thread” takes the data from the
“capture queue,” converts it into an OpenCV Mat object, applies the OpenCV blob detection
algorithm to identify the pupil, and notes the key features. Each detection thread also outputs
the eye position (i.e., center of the pupil) as text on the frame and draws a circle around the
blob identified as the pupil. All of these steps are very time consuming, which is why we
recommend initializing multiple threads for higher performance. Once the detection stage has
completed, the frames are stored in a “display queue” that the “display thread” will grab from
to show the images. The detection threads also package the frame and keypoints information
into a struct object and stores it in a “network queue.” The “network thread” reads from this
queue and sends out packets over a UDP socket for downstream applications.

Performance

Under the conditions at the time of development, we were able to achieve frame acquisition
rates of up to 715 frames per sec (fps) and display rates of up to 145 fps. Although more
threads, in theory, should increase speed, four detection threads were sufficient to keep up with
the camera. Performance was significantly improved when we used the tool provided by Tele-
dyne Dalsa that adjusts various features of the network buffers and allows higher throughput
transmission from the camera to the computer. Additionally, environmental lighting signifi-
cantly affects the speed at which the blob detection occurs. The OpenCV blob detector by
default looks for black blobs, and thus more light allows for easier detection by increasing the
contrast between darker and lighter areas of the image. To facilitate blob detection, we also
apply binary thresholding to the images. The user can also specify a region of interest for the
blob detector, which again improves processing time. For eye tracking, it is necessary to have
an infrared IR light source to obtain a eye image with increased contrast between the pupil
and the surrounding regions.

Casas et al., (2019). openEyeTrack - A high speed multi-threaded eye tracker for head-fixed applications. Journal of Open Source Software,
4(42), 1631. https://doi.org/10.21105/joss.01631

2

https://doi.org/10.21105/joss.01631

Limitations

Our eye tracking solution is not meant to solve all gaze tracking issues which may be more
readily addressed in commercial solutions.

1. openEyeTrack cannot be used if the head is freely moving. In our approach, which only
detects the pupil, head motion is confounded with pupil motion. One future solution is
to use both the corneal reflection and the pupil to allow for head-free eye tracking. We
anticipate implementing corneal reflections in future versions of openEyeTrack.

2. openEyeTrack does not output signals to analog channels which is a typical feature of
commercial eye trackers. These analog signals were proxies for the analog signals from
scleral search coils used for eye tracking.

3. Using openEyeTrack requires knowledge of Linux and some degree of comfort with the
command line to compile and install various components — it is not as seamless and
polished as commercial solutions. On the other hand, it provides open-source code for
eye-tracking.

openEyeTrack is available on GitHub at https://github.com/chand-lab/openEyeTrack. A
more detailed description of usage can be found under the README.md and USAGE.md files
located in the repository.

Casas et al., (2019). openEyeTrack - A high speed multi-threaded eye tracker for head-fixed applications. Journal of Open Source Software,
4(42), 1631. https://doi.org/10.21105/joss.01631

3

https://github.com/chand-lab/openEyeTrack
https://doi.org/10.21105/joss.01631

-
Figure 1: A visual depiction of the overall software and hardware architecture in openEyeTrack.

Acknowledgements

We would like to acknowledge Jeremy Casas for his invaluable feedback and support through-
out this project. This work was supported by an NIH/NINDS Grant to CC (4R00NS092972-
03), Moorman-Simon Interdisciplinary Career Development Professorship (CC), and startup
funds provided by Boston University to CC.

References

Bevilacqua, F. (2018). A (very) simple UI lib built on top of OpenCV drawing primitives.
Retrieved July 26, 2019, from https://github.com/Dovyski/cvui

Casas et al., (2019). openEyeTrack - A high speed multi-threaded eye tracker for head-fixed applications. Journal of Open Source Software,
4(42), 1631. https://doi.org/10.21105/joss.01631

4

https://github.com/Dovyski/cvui
https://doi.org/10.21105/joss.01631

Bradski, G., & Kaehler, A. (2016). Learning OpenCV 3: Computer vision in C++ with the
OpenCV library. O’Reilly Media, Inc.
Kimmel, D., Mammo, D., & Newsome, W. (2012). Tracking the eye non-invasively: Simul-
taneous comparison of the scleral search coil and optical tracking techniques in the macaque
monkey. Frontiers in Behavioral Neuroscience, 6, 49. doi:10.3389/fnbeh.2012.00049
OpenCV. (2019a). OpenCV: Open Source Computer Vision Library. Retrieved July 1, 2019,
from https://github.com/opencv/opencv
OpenCV. (2019b). The OpenCV reference manual, edition 4.1.1. Retrieved July 1, 2019,
from https://docs.opencv.org/4.1.1/
Teledyne DALSA. (2018). GigE-V framework for linux. Retrieved from https://www.
teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
The Qt Company Ltd. (2013). Qt. Retrieved from https://www.qt.io/
Võ, M. L.-H., Jacobs, A. M., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., & Hutzler,
F. (2008). The coupling of emotion and cognition in the eye: Introducing the pupil old/new
effect. Psychophysiology, 45(1), 130–140. doi:10.1111/j.1469-8986.2007.00606.x
Zimmermann, J., Vazquez, Y., Glimcher, P. W., Pesaran, B., & Louie, K. (2016). Oculomatic:
High speed, reliable, and accurate open-source eye tracking for humans and non-human pri-
mates. Journal of Neuroscience Methods, 270, 138–146. doi:10.1016/j.jneumeth.2016.06.016

Casas et al., (2019). openEyeTrack - A high speed multi-threaded eye tracker for head-fixed applications. Journal of Open Source Software,
4(42), 1631. https://doi.org/10.21105/joss.01631

5

https://doi.org/10.3389/fnbeh.2012.00049
https://github.com/opencv/opencv
https://docs.opencv.org/4.1.1/
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
https://www.qt.io/
https://doi.org/10.1111/j.1469-8986.2007.00606.x
https://doi.org/10.1016/j.jneumeth.2016.06.016
https://doi.org/10.21105/joss.01631

	Statement of Need
	Software and Hardware components
	Multithreading provides improvements over existing open source solutions
	Algorithm
	Performance
	Limitations
	Acknowledgements
	References

