The Journal of Open Source Software

DOI: 10.21105/joss.01651

Software

= Review @@
= Repository &7
= Archive &2

Submitted: 13 August 2019
Published: 02 September 2019

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

In partnership with

AMERICAN
AlA STRONOMICAL
S sociETy

This article and software are
linked with research article DOI
10.3847/1538-4357 /ab3fab,
published in the Astrophysical
Journal.

deepCR: Cosmic Ray Rejection with Deep Learning

Keming Zhang' and Joshua S. Bloom?! 2

1 Department of Astronomy, University of California, Berkeley 2 Lawrence Berkeley National
Laboratory

Summary

Astronomical imaging and spectroscopy data are frequently corrupted by “cosmic rays” (CR)
which are high energy charged particles that are instrumental, terrestrial, or cosmic in ori-
gin. When such particles pass through solid state detectors, such as charged coupled devices
(CCDs), they create excess flux in the pixels hit which lead to artifacts in images. These
artifacts must be identified and either masked or replaced, before further scientific analysis
could be done on the image data. It is straightforward to identify these artifacts when multiple
exposures of the same field are taken. In such cases, a median image could be calculated from
aligned single exposures, effectively creating a CR-free image. Each one of the exposures
is then compared with the median image to identify the cosmic rays. However, when CCD
read-out times are non-negligible, or when sources of interest are transient or variable, cosmic
ray rejection with multiple exposures can be sub-optimal or infeasible. These cases would
require specialized algorithms to detect cosmic rays in single images.

12) 32 32 64 32 32 1 o
i et deepCR-mask
N .
> e d bd b d
b ‘ deepCR-inpaint
32 64 64 128 64 64
8 Fa
M Ed b4 Emmd > >
conv 3 x 3 + ReLU ¢
conv1x1

64 128 128
3
3l

Figure 1: Neural network architecture of deepCR. Feature maps are represented by gray boxes while
the number of channels and example feature map dimensions are indicated on the top of and to the
left of each feature map, respectively. Different computational operations are marked in the legend
to the lower left. Unfilled boxes to the right of blue arrows represent feature maps directly copied
from the left, which are to be concatenated with the adjacent feature map. To apply the inpainting
model, the predicted mask (dotted box at left) is concatenated with the original image as the input.

transpose conv 2 x 2
maxpool 2 x 2

AR/

copy and concatenate

deepCR is a Python package for single frame cosmic ray rejection which is based on deep
learning and written with the Pytorch framework (Paszke et al., 2017). Since deepCR is

Zhang et al., (2019). deepCR: Cosmic Ray Rejection with Deep Learning. Journal of Open Source Software, 4(41), 1651. https://doi.org/10. 1

21105 /joss.01651

https://doi.org/10.21105/joss.01651
https://github.com/openjournals/joss-reviews/issues/1651
https://github.com/profjsb/deepCR
https://doi.org/10.5281/zenodo.3383309
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3847/1538-4357/ab3fa6
https://doi.org/10.21105/joss.01651
https://doi.org/10.21105/joss.01651

The Journal of Open Source Software

based on deep learning, different models trained on data taken with different instrument
configurations are required, when applied to different data. The current version of deepCR is
prepackaged with model for Hubble Space Telescope ACS/WFC imaging data, and we expect
models available to grow with contribution from the community. We plan to host a “model
200" which enables deepCR to work across different instrument configurations.

The API of deepCR includes functionality for both applying models and training models. To
apply an available model, deepCR takes in an input image and produces a cosmic ray mask
and an “inpainted” image, with the artifact pixels replaced with deepCR predictions. To train
a new model, users would feed in custom dataset to the training API, which is automated.
deepCR works with both CPU, which is well-threaded at application time, and GPU. On GPU,
training a new model takes as short as 20 minutes, while applying deepCR on a 10 Mpix
image requires less than 0.2 second, orders of magnitude faster than current state of the art
LACosmic (van Dokkum, 2001).

i J a |
ket g = . [5 .
il : . ; e o SR

Original ‘_‘ y \ P | | B [

" 4 . | i ; ‘
Predicted © . . . A I __,
CR mask - \ . -~ e

I, . - "
Inpainted - B i .

Figure 2: Examples of cosmic ray contaminated image cutouts (first row), deepCR cosmic ray mask
predictions (middle row), and images with artifact pixels replaced with deepCR predictions (last row).

In the paper accompanying deepCR (Zhang & Bloom, 2019), the authors showed that on
Hubble Space Telescope (HST) ACS/WFC data, deepCR is more robust, and at least as fast
as the current state-of-the-art single frame cosmic ray rejection package, LACosmic. The
API of deepCR serve as a drop in replacement for LACosmic, so that users may experiment
with different packages easily. At reasonable false detection rates, deepCR achieved near
perfect cosmic ray detection in extragalactic and globular cluster fields, and above 90% in
more difficult dense stellar fields in nearby resolved galaxies. Since HST imaging is among
the hardest cosmic ray rejection to be solved, deepCR would work well across many different
instrument set-ups, including ground based imaging and spectroscopy. The combination of
speed and accuracy of deepCR allows astronomers to potentially save large amounts of precious
observational and computational resources.

Acknowledgements

This work was supported by a Gordon and Betty Moore Foundation Data-Driven Discovery
grant, and has made use of the following software:

astropy (Astropy Collaboration et al., 2018); astrodrizzle (Hack et al., 2012); numpy (van
der Walt, Colbert, & Varoquaux, 2011); scipy (Jones, Oliphant, Peterson, & others, 2001);
matplotlib (Hunter, 2007); astroscrappy (McCully et al., 2018); pytorch (Paszke et al., 2017);
Jupyter (Kluyver et al., 2016); Scikit-image (Walt et al., 2014)

Zhang et al., (2019). deepCR: Cosmic Ray Rejection with Deep Learning. Journal of Open Source Software, 4(41), 1651. https://doi.org/10. 2
21105/joss.01651

https://doi.org/10.21105/joss.01651
https://doi.org/10.21105/joss.01651

The Journal of Open Source Software

References

Astropy Collaboration, Price-Whelan, A. M., Sipbcz, B. M., Giinther, H. M., Lim, P. L,
Crawford, S. M., Conseil, S., et al. (2018). The astropy project: Building an open-science
project and status of the v2.0 core package. The Astronomical Journal, 156(3), 123. doi:10.
3847/1538-3881/aabc4f

Hack, W. J., Dencheva, N., Fruchter, A. S., Armstrong, A., Avila, R., Baggett, S., Bray,
E., et al. (2012). AstroDrizzle: More than a New MultiDrizzle. In American astronomical
society meeting abstracts #220, American astronomical society meeting abstracts (Vol. 220,
p. 135.15).

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science and
Engineering, 9, 90-95. doi:10.1109/MCSE.2007.55

Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific tools
for Python. http://www.scipy.org/.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., et al. (2016). Jupyter notebooks — a publishing format for reproducible computational
workflows. (F. Loizides & B. Schmidt, Eds.). 10S Press.

McCully, C., Crawford, S., Kovacs, G., Tollerud, E., Betts, E., Bradley, L., Craig, M., et
al. (2018, November). Astropy/astroscrappy: V1.0.5 zenodo release. doi:10.5281/zenodo.
1482019

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., et al. (2017).
Automatic differentiation in pytorch. In NIPS-workshop.

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science Engineering, 13(2), 22-30. doi:10.
1109/MCSE.2011.37

van Dokkum, P. G. (2001). Cosmic-Ray Rejection by Laplacian Edge Detection, 113, 1420-
1427. doi:10.1086/323894

Walt, S. van der, Schénberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager,
N., Gouillart, E., et al. (2014). Scikit-image: Image processing in Python. PeerJ, 2, e453.
doi:10.7717 /peerj.453

Zhang, K., & Bloom, J. S. (2019). deepCR: Cosmic Ray Rejection with Deep Learning. arXiv
e-prints. Retrieved from http://arxiv.org/abs/1907.09500

Zhang et al., (2019). deepCR: Cosmic Ray Rejection with Deep Learning. Journal of Open Source Software, 4(41), 1651. https://doi.org/10. 3

21105/joss.01651

https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1109/MCSE.2007.55
http://www.scipy.org/
https://doi.org/10.5281/zenodo.1482019
https://doi.org/10.5281/zenodo.1482019
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1086/323894
https://doi.org/10.7717/peerj.453
http://arxiv.org/abs/1907.09500
https://doi.org/10.21105/joss.01651
https://doi.org/10.21105/joss.01651

	Summary
	Acknowledgements
	References

