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Summary

Optimization is a mathematical problem often found in science and engineering. Currently,
however, there is no general method to face this problem. Solutions are generally addressed by
two approaches, both iterative: (a) quasi-Newton methods (Griva, Nash, & Sofer, 2009) and
(b) heuristic methods (Coley, 1999; Feoktistov, 2006). Each one has advantages depending on
the problem to be optimized. Quasi-Newton methods, in general, converge faster then heuristic
methods provided the function to be optimized (the objective function) is smooth. Heuristic
methods, on the other hand, are more appropriate to deal with noisy objective functions,
to handle failures in the calculation of the objective function and are less susceptible to be
retained in local optimum than quasi-Newton methods.
Among the heuristic methods, Differential Evolution (DE) (Price, Storn, & Lampinen, 2005;
Storn & Price, 1997) had emerged as a simple and efficient method for finding the global
maximum. This method is based on the principles of biological evolution.
To combine the robustness of heuristic methods with the high convergence speed of quasi-
Newton methods, Loris Vincenzi and Marco Savoia (Vincenzi & Savoia, 2015) proposed cou-
pling Differential Evolution heuristic with Response Surfaces (Khuri & Cornell, 1996; Myers,
Montgomery, & Anderson-Cook, 2009). Fitting Response Surfaces during optimization and
finding their optima mimics quasi-Newton methods. The authors showed that this approach
reduced significantly the effort to solve some problems within a given tolerance (in general,
more than 50% compared to the original heuristic method).
Based on the paper of Loris Vincenzi and Marco Savoia, but applying a different algorithm, a
software called DEPP, an acronym for Differential Evolution Parallel Program, was developed.
DEPP source code is written following Fortran 2008 standard (Brainerd, 2015), it is based on
the object-oriented paradigm and it includes MPI parallelization (Message Passing Interface
Forum, 2009). The main algorithm was prepared to simplify the development and extension of
the code, relying on abstract classes and polymorphism. Following this idea, design patterns
(Freeman, Freeman, Bates, & Sierra, 2004) were also applied. Object instances are generated
through the Factory Design Pattern and Adapter Design Pattern was applied to encapsulate
MPI commands, for instance. In this way, users may implement new optimization methods
without changing the main algorithm.
Due to its supporting theory, DEPP is well suited to address optimization problems of mul-
timodal, noisy, poor-precision-calculated and failure-susceptible objective functions, taking
advantage of acceleration provided by parallelization and hybridization models, like Differen-
tial Evolution-Response Surface coupling.
In the following sections, a brief description of DEPP, its supporting theory, and some examples
are presented.
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Software description

Software Architecture

DEPP source code was written following the FORTRAN 2008 standard language (Brainerd,
2015), it uses the Message Passing Interface (MPI) directives (Message Passing Interface
Forum, 2009) for parallel processing and takes advantage of the Object-Oriented Paradigm.
Thanks to Object-Oriented Programming, the source code was designed to simplify the im-
plementation of new methods. The algorithm works on abstract classes separated, basically,
as (i) population initializers, (ii) search strategies, (iii) fitness calculation and (iv) stop con-
ditions. The concrete classes are generated using the Factory Design Pattern (Freeman et
al., 2004). All MPI commands are encapsulated into proper classes, following the logic of the
Adapter Design Pattern. In this way, users interested in the implementation of new methods
will not concern about MPI details.
DEPP treats the fitness function as a black-box, that must be provided by an external program
(EP). This approach increases the range of the application of DEPP, since in many cases the
fitness function can not be written as a DEPP subroutine.
Communication between DEPP and the external program is performed by disk files. DEPP
calls the EP by command-line, passing to it the name of a file as an argument. This file contains
the name of another file (where the external program must save fitness), the dimension of the
trial solution vector X and the components X1, X2, … of X, e.g.,

<path/filename> = arqfit: name of the file to save fitness
<value> = nu: number of unknowns (dim. of the trial vector X)

<value of X1>
.
.
.

<value of Xnu>

On the other hand, the external program must calculate, and save the fitness in the file
indicated by DEPP with an exit status code (to be further explained). This file reads as

<value> = Fitness
<value> = Exit status code

The basic algorithm of DEPP is illustrated in Figure 1. DEPP reads the input data from
a configuration file, whose name is passed to it by a command-line argument. The stop
condition is analyzed. In the first iteration, the stop condition is generally not satisfied (it
may not be true when starting from a backup). When the stop condition is satisfied, the
iterative procedure is finished and the output data is saved in the depp_output directory.
Otherwise, a trial population is generated. DEPP sends the information to a set of threads
(T1,· · ·, TN) using MPI. Then, each of these threads runs a copy of the external program (EP)
for a given individual of the population. After that, DEPP receives the calculated objective
function and compares their fitness with the fitness of the current population. Only the best
individuals are held. A backup is optionally generated and the iterative cycle is restarted.
During the calculation of the objective function, some failures may occur. DEPP handles
failures using an exit status code returned by the external program. If the exit code is 0, the
calculations were performed correctly; if 1 is returned, then a failure occurred and the trial
individual is discarded; if 2 is returned, then a failure occurred, the trial individual is discarded
and a new one is generated. All the failures are registered for the posterior user’s analysis.
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Figure 1: DEPP’s basic algorithm.

The folder structure of DEPP is shown in Figure 2. The directory src contains the DEPP
source code. After compilation, the executable depp.x is moved to bin directory. test folder
contains Bash scripts (Ramey & Fox, 2016) to perform code verification and installation
check-up. Examples are provided within examples directory.

Figure 2: Folder structure of DEPP.

Supporting theory

The following sections describe the optimization theory behind the current implementation
of DEPP. It must be emphasized that DEPP was designed based on an Object-Oriented
Paradigm, in such a way to simplify the implementation of new and better methods.
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Differential Evolution

The Differential Evolution algorithm is based on the principles of biological evolution. Basi-
cally, it works as follows. Given a population (set of discrete points in the domain of search),
new individuals (trial points) are generated by “mutation” and “crossing over”. Here, “mu-
tation” means a rule for creating new trial individuals while “crossing over” means a rule of
exchanging information between a trial individual and an individual of the population. The
fitness (objective function) of the new individuals is compared to the fitness of the parent
individuals and the worse individuals are eliminated. The procedure is repeated for several
generations (iterations) until a criterion of convergence is satisfied within a given tolerance.
The current version of DEPP focus on a particular kind of maximization problem, often found
in practical applications, i.e.,

maximize
x

f(x)

subject to
L ≤ x ≤ U ,

where f is a real-valued function, also known as the objective function, depending on a D-
dimensional vector x = (x1, · · · , xD) of real variables. The variable x is confined in a box
with lower L = (L1, · · · , LD) and upper U = (U1, · · · , UD) bounds.
The first step toward solving this optimization problem is the population initialization. For the
first generation (g = 1), a population (set of points) {xi} 1 ≤ i ≤ Np is created randomly
within the box L ≤ x ≤ U , e.g.

xij = Lj + (Uj − Lj)R, 1 ≤ j ≤ D,

where R is a random number uniformly distributed in [0, 1) and xij is the j-th element of the
i-th individual.
After the population initialization, the fitness of each individual xi is calculated.
For the next generations, trial individuals are calculated based on the population of the previous
generations. Trial individuals are created by a process of mutation and crossing over as follows.
For each individual xi of the previous population, other three distinct individuals (xi1 , xi2

and xi3) of the same population are randomly selected and a mutant individual v is created

v = xi1 + F (xi3 − xi2),

where F is the differentiation parameter. Then, the mutant individual and xi cross over,
producing the trial individual u. The components uj (1 ≤ j ≤ D) of u are given by

uj =

{
vj if R < Cr or j = j∗,

xij otherwise.

In the previous equation, Cr is the crossover parameter and j∗ is an integer randomly chosen
between 1 and D. If the trial individual violates the constraints, i.e. if it is not within L ≤
u ≤ U , then the process of generating a trial individual is repeated.
The fitness of the trial individual is compared to the fitness of xi. If f(xi) ≤ f(u), then u
replaces xi. This is the so-called selection.
New generations are created until a stopping condition is satisfied. DEPP implements a com-
position of the following stopping conditions: (i) best fitness stagnation, (ii) maximum number
of generations and (iii) population convergence measure. In the first one, the generation cycle
is interrupted if no improvement of the fitness function is achieved within NA generations.
The second condition establishes the maximum number of generations allowed. Finally, in

Radtke et al., (2020). DEPP - Differential Evolution Parallel Program. Journal of Open Source Software, 5(47), 1701. https://doi.org/10.
21105/joss.01701

4

https://doi.org/10.21105/joss.01701
https://doi.org/10.21105/joss.01701


the third condition, the cycle is interrupted if the P-measure Pm (Feoktistov, 2006) is lower
or equal to a given tolerance. The P-measure is evaluated as

Pm = max
1≤i≤Np

|x′
i − x′

m|,

where | · | is the L2 norm, the components of x′
i are given by

x′
ij =

xij − Lj

Uj − Lj
, 1 ≤ j ≤ D

and

x′
m =

1

Np

Np∑
i=1

x′
i.

The approach presented in this section has three parameters: the population size Np, the
differentiation parameter F and the crossover parameter Cr. Feoktistov (2006) gives reference
values/ranges of these parameters based on optimization studies performed on many test
functions.

Differential Evolution and Response Surface Methodology

In order to accelerate the convergence of DE, Vincenzi & Savoia (2015) proposed a new mu-
tation operation based on the Response Surface Methodology (RSM) (Khuri & Cornell, 1996;
Myers et al., 2009). The basic idea consists of fitting a simple response surface to a selected
set of individuals of the population. The mutant vector is, then, obtained by maximizing the
response surface, which is done through matrix inversion. For a given benchmark, the authors
showed that the number of generations necessary to reach a given precision was substantially
reduced (more than 50%).
Vincenzi and Savoia considered two response surfaces. The first one is a quadratic polynomial
P (x), given by

P (x) = β0 +

D∑
i=1

βixi +

D∑
i=1

βiix
2
i +

D−1∑
i=1

D∑
j=i+1

βijxixj ,

where β are coefficients to be fitted. The quadratic polynomial has Nfm = (D+1)(D+2)/2
coefficients and, so, it requires, at least, the same number of points to be fitted. Note that
the number of points grows significantly when the number of unknowns D is increased. That
is why Vincenzi and Savoia proposed a second model.
The second model is an “Incomplete Quadratic Model”, where the terms βij of the previous
equation are neglected. In this case, the minimum number of fitting points is reduced to
Nfm = 2D + 1. On the other hand, the accuracy of the model is also reduced.
The DE-RSM hybridization implemented in DEPP was inspired in the work of Vincenzi and
Savoia, but with some modifications that are explained below.
DEPP stores a history list, i.e. a list of all individuals calculated since the first generation
and their corresponding fitness. This list is employed to generate mutant vectors by RSM
hybridization and may be used by other methods to be implemented in the future.
According to the DE algorithm, for each individual xi of the population, a trial individual u is
created, resulting from a mutation and a crossing over. When the RSM hybridization is active,
the mutant vector may be created by the DE procedure explained in the previous section or
by hybridization with RSM. The following conditions must be satisfied simultaneously for
applying RSM:
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• The number of individuals in the history list must be, at least, twice the number of
individuals required to fit the response surface Nf . Notice that Nfm ≤ Nf ;

• A random number R (within [0,1)) must be less than the probability of hybridization
fh.

The probability of hybridization fh may be prescribed by the user or may be calculated dy-
namically during the optimization. The dynamic calculation of fh considers the probability of
success fs when applying RSM. More precisely,

fh =


fhmin

fs ≤ fhmin
,

fs fhmin
< fs < fhmax

,

fhmax
fhmax

≤ fs,

where fhmin and fhmax are the minimum and maximum allowed values of fh, respectively.
The probability of success of RSM fs is the ratio of the number of times that the hybridization
contributed to maximizing the objective function to the last Np times RSM hybridization was
applied. In the first generations, when the number of samples is less than Np, fs is not
available. In this case, fh is equal to fh0, an initial value of the fraction of hybridization.
Suppose, now, that a mutant vector, associated with individual xi, will be calculated by
DE-RSM hybridization. In order to fit a response surface, it is necessary to select a set of
individuals. This selection is made in two steps. First, the history list is ordered from the
best individual to the worst one and the i-th best individual x̂ is taken (target individual).
Second, the history list is reordered from the closest to the furthermost individual to the target
individual. From this list, Nf − 1 individuals are selected according to the following rules,
starting from the closest individual:

• The distance between x̂ and the candidate individual xk must satisfy√√√√ D∑
j=1

(
x̂j − xkj

Uj − Lj

)2

≥ ηtol,

where ηtol is a prescribed tolerance. In other words, there is a minimum distance between
the target individual and its neighbors.

• The candidate individual xk is selected with a probability of 50%.

Once the fitting individuals are selected, the coefficients of the response surface are determined
using the weighted least squares method (Khuri & Cornell, 1996).
Two weighting functions are implemented in DEPP: uniform and exponential (Vincenzi &
Savoia, 2015). The exponential weighting function reads as

w(xk) =

{
exp

(
f(xk)−fbest

fbest

)
fbest ̸= 0

exp (f(xk)− fbest) fbest = 0,

where xk is any of the selected individuals for fitting and fbest is the best fitness among the
individuals selected for fitting.
Finally, the mutant vector is obtained by maximizing the response surface.
If the application of RSM fails or the trial individual is out of range, then a pure DE individual
is created.
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Examples

Four test functions, whose maximizers are known analytically, were chosen for illustrating the
application of DEPP:

• Step function (Zhang & Sanderson, 2009)
f(x) = −

∑D
i=1 (⌊xi − 0.5⌋)2,

Figure 3: Step function.

• Rosenbrock function (Feoktistov, 2006)
f(x) = −

∑D−1
i=1 100

(
x2
i − xi+1

)2
+ (1− xi)

2,

Figure 4: Rosenbrock function.

• Noisy Quartic function (Zhang & Sanderson, 2009)
f(x) = −R−

∑D
i=1 i x

4
i ,

where R is a uniform random number belonging to [0, 1),

Figure 5: Noisy Quartic function.
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• Schwefel 2.26 function (Zhang & Sanderson, 2009)

f(x) = −418.98288727243369 D +
∑D

i=1 xi sin
(√

|xi|
)

.

Figure 6: Schwefel 2.26 function.

These functions were chosen because they present particular features that make optimization
difficult. The Step function (Fig. 3), a set of flat surfaces, poses a hard problem to optimizers
relying on functions’ derivatives. This is even worse for the Noisy Quartic function (Fig.
4), which has a noisy plateau near its maximum. Rosenbrock’s function (Fig. 5), although
smooth, has a sharp narrow ridge around a parabola, which makes it a challenge to find an
appropriate search direction. Finally, Schwefel 2.26 (Fig. 6) has several local optima, which
may lead to premature convergence.
The maximizers x∗

i and the domain of optimization of the test functions are presented in
Table 1.

Table 1: Lower Li and upper Ui bounds for maximization and the global maximizer x∗
i (1 ≤ i ≤ D).

Function Li Ui x∗
i

Step -100 100 0.5
Rosenbrock -2 2 1

Noisy Quartic -1.28 1.28 0
Schwefel 2.26 -500 500 420.968597844358

Additionally, this example aims (i) to show the effect of DE-Response Surface (DE-RSM)
coupling on reducing the number of iterations required to achieve convergence and (ii) to
show the effect of parallelization on reducing the optimization time. In order to accomplish
the first task, the four test functions were optimized for D ∈ {2, 4, 8} dimensions using DE
and DE-RSM. For the second task, the number of dimensions was restricted to D = 2, but for
each call of the external software that calculates the objective function, it was added a delay
of 1 s in order to simulate a computationally expensive program. Since DE is a stochastic
method, in both tasks, the final results are the average of 50 optimizations.
The parameters applied in the optimization are as follows. The population size is Np = 20 for
D = 2 and Np = 40 for D = 4 and D = 8. For pure DE, F = 0.85, Cr = 0.5. Hybridization
uses quadratic polynomial as the response surface. The fraction of hybridization is calculated
dynamically using fh0 = 0.35, fmin = 0.1 and fmax = 0.9. The crossing over parameter of
RSM is Cr = 1. The number of individuals selected for fitting the response surface is twice
the minimum required, i.e. Nf = 2Nfm . The tolerance for selecting individuals for fitting is
ηtol = 0.0001. Uniform weighting is applied for fitting. Concerning the stopping conditions,
the maximum number of generations allowed is 5000, the maximum number of generations
allowed without improving fitness function is 40, for D = 2, and 80, for D ∈ {4; 8}, and the
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tolerance of P-measure is Pm ≤ Ptol = 5× 10−4.
For the test functions considered, numerical results show that DE-Response Surface (DE-
RSM) coupling reduces the number of generations necessary to find the global maximizer.
Table 2 compares the mean number of generations G necessary to reach stop condition and
the probability of success Ps to achieve the global maximum. The number in parenthesis
is the standard deviation σ. The poor performance of DE in finding the global maximum
of Rosenbrock’s function is due to stop condition. In this case, the number of generations
without improving the fitness function was exceeded and optimization was interrupted.

Table 2: Number of generations G to reach stop condition and probability of success Ps.

G G Ps Ps

Function D DE DE-RSM DE DE-RSM
———– — ——– ——– —– ——

2 59 (4) 42 (0) 100 100
Step 4 130 (4) 82 (0) 100 100

8 221 (9) 85 (0) 100 100
———–

2 106 (10) 35 (4) 100 100
Rosenbrock 4 636 (131) 101 (17) 94 100

8 1526 (395) 288 (68) 20 100
———–

2 82 (30) 80 (30) 100 100
Noisy Quartic 4 178 (60) 155 (59) 100 100

8 222 (60) 154 (72) 100 100
———–

2 47 (4) 20 (3) 98 90
Schwefel 2.26 4 107 (6) 43 (4) 100 100

8 262 (12) 116 (11) 100 98

The maximizer x∗ of optimization was considered a success if

|f(x∗)− f(x∗
a)| ≤ Ftol or |x∗ − x∗

a| ≤ Ptol,

where x∗
a is the analytical global maximizer and Ftol is given by

Ftol = max
x

|f(x)− f(x∗
a)|, subject to |x− x∗

a| ≤ Ptol.

Finally, Tab. 3 presents the mean computational time per generation τ for different number
of threads Nt. As can be seen, τNt is approximately proportional to τ1/Nt.

Table 3: Mean computational time per generation τ for different numbers of threads Nt. D = 2.

τ (s) τ (s)
Function Nt DE DE-RSM

—— — — —
1 20.27 20.27

Step 2 10.11 10.10
3 7.07 7.09
4 5.06 5.06

——
1 20.23 20.28

Rosenbrock 2 10.11 10.11
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τ (s) τ (s)
3 7.10 7.08
4 5.07 5.07

——
1 20.23 20.19

Noisy Quartic 2 10.11 10.12
3 7.07 7.07
4 5.08 5.07

——
1 20.21 20.26

Schwefel 2.26 2 10.14 10.13
3 7.09 7.08
4 5.07 5.09
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