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In The Walrus, we provide a highly optimized implementation of the
best known algorithms for hafnians, loop hafnians, multidimensional
Hermite polynomials, and torontonians of generic real and complex ma-
trices. We also provide access to recently proposed methods to generate
samples of a Gaussian boson sampler. These methods have exponen-
tial time complexity in the number of bosons measured. For ease of
use, a Python interface to the library’s low-level C++ implementations
is also provided, as well as pre-compiled static libraries installable via
the Python package manager pip. This short paper provides a high-
level description of the library and its rationale; in-depth information
on the algorithms, implementations and interface can be found in its
documentation.

The hafnian matrix function was introduced by Caianiello (1953) as a generalization of the
permanent while studying problems in bosonic quantum field theory. For a symmetric matrix
A = AT of size 2n, the hafnian (haf) is defined as

haf (A) =
∑

σ∈PMP(2n)

n∏
i=1

Aσ(2i−1),σ(2i),

where PMP(2n) is the set of perfect matching permutations of 2n elements, i.e., permutations
σ : [2n] → [2n] such that σ(2i − 1) < σ(2i) and σ(2i − 1) < σ(2i + 1) for all i (Barvinok,
2016).
While the permanent counts the number of perfect matchings of a bipartite graph encoded in
an adjacency matrix B, the hafnian counts the number of perfect matchings of an arbitrary
undirected graph, and thus the permanent is a special case of the hafnian; this relation is
encapsulated in the identity perm(B) = haf

([
0 B

BT 0

])
.

The permanent has received a significant amount of attention, especially after Valiant (1979)
proved that it is #P-hard to compute, giving one of the first examples of a problem in this
complexity class. This important complexity-theoretic observation was predated by Ryser
(1963), who provided an algorithm to calculate the permanent of an arbitrary matrix of size
n× n in O(2n) time, which is still to date the fastest algorithm for calculating permanents.
Surprisingly, it took almost half a century to derive a formula for hafnians that matched the
complexity of the one for permanents. Indeed, it was only Björklund (2012) who derived an
algorithm that computed the hafnian of a 2n× 2n matrix in time O(2n).
The interest in hafnians was recently reignited by findings in quantum computing. Gaussian
Boson Sampling (GBS) (Hamilton et al., 2017; Kruse et al., 2019) is a non-universal model of
quantum computation in which it is possible to show that there are computations a quantum
computer can do in polynomial time that a classical computer cannot. Experimentally, GBS
is based on the idea that a certain subset of quantum states, so-called Gaussian states, can
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be easily prepared in physical devices, and then those states can be measured with particle-
number resolving detectors. Because these are quantum mechanical particles, the outcomes
of the measurements are stochastic in nature and it is precisely the simulation of these random
“samples” that requires superpolynomial time to simulate on a classical computer.
The relation between GBS and hafnians stems from the fact that the probability of a given
experimental outcome is proportional to the hafnian of a matrix constructed from the covari-
ance matrix of the Gaussian state. This observation requires the Gaussian state to have zero
mean and the detector to be able to resolve any number of particles. More generally, one can
consider Gaussian states with finite mean (N Quesada, 2019; N. Quesada et al., 2019), in
which the probability is given by a loop hafnian, a matrix function that counts the number of
perfect matchings of a graph that has loops (Björklund, Gupt, & Quesada, 2019). Moreover,
if the particle detectors can only decide whether there were zero or more than zero particles
– so-called threshold detectors – then the probability is given by the torontonian, a matrix
function that acts as a generating function for the hafnian (Quesada, Arrazola, & Killoran,
2018). One can also show that the probabilities of a Gaussian state probed in the number
basis are related to multidimensional Hermite polynomials (Dodonov, Man’ko, & Man’ko,
1994). Calculating the probabilities of a GBS experiment in terms of multidimensional Her-
mite polynomials (Kok & Braunstein, 2001) is often suboptimal since they have worse space
and time scaling than the corresponding calculation in terms of hafnians.
In The Walrus, we provide a highly optimized implementation of the best known algorithms for
hafnians, loop hafnians, Hermite polynomials, and torontonians of generic real and complex
matrices. We also implement algorithms that specialize to certain matrices with structure, for
example having repeated rows and columns (Kan, 2008) or non-negative entries (Barvinok,
1999). For increased efficiency, these algorithms are implemented in C++ as a templated
header-only library, allowing them to be applied to arbitrary numeric types and are also par-
allelized via OpenMP. Common linear algebra algorithms are applied using the Eigen C++
template library, which may also act as a frontend to an optimized BLAS/LAPACKE library
installation if the user so chooses. For ease of use, a Python interface to the low-level C++
algorithms is also provided, as well as pre-compiled static libraries installable via the Python
package manager pip for Windows, MacOS, and Linux users. We also provide implementa-
tions of multidimensional Hermite polynomials, that are, to the best of our knowledge, the
first ones implemented in a fast open source library. With this underlying machinery we also
provide two extra Python-only modules. The first one, quantum, allows one to calculate in
a straightforward manner the probabilities or probability amplitudes of Gaussian states in the
particle representation. The second one, samples, allows one to generate GBS samples. This
module implements state-of-the-art algorithms that have been recently developed (Nicolas
Quesada & Arrazola, 2019). Of course, given the promise that GBS should be a hard prob-
lem for classical computers, the complexity of the algorithm we provide for GBS is, like the
complexity of the hafnian, still exponential in the size of the number of particles generated.
Our package has already been used in several research efforts to understand how to generate
resource states for universal quantum computing (N. Quesada et al., 2019; Tzitrin, Bourassa,
Menicucci, & Sabapathy, 2019), study the dynamics of vibrational quanta in molecules (N
Quesada, 2019; Valson Jacob, Kaur, Roga, & Takeoka, 2019), and develop the applications
of GBS (Bromley et al., 2019) to molecular docking (Banchi, Fingerhuth, Babej, & Arra-
zola, 2019), graph theory (Schuld, Brádler, Israel, Su, & Gupt, 2019), and point processes
(Jahangiri, Arrazola, Quesada, & Killoran, 2019). More importantly, it has been useful in de-
lineating when quantum computation can be simulated by classical computing resources and
when it cannot (Gupt, Arrazola, Quesada, & Bromley, 2018; Killoran et al., 2019; Nicolas
Quesada & Arrazola, 2019; Wu, Cheng, Zhang, Yung, & Sun, 2019).
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