
Pakman: a modular, efficient and portable tool for
approximate Bayesian inference
Thomas F. Pak1, Ruth E. Baker1, and Joe M. Pitt-Francis2

1 Mathematical Institute, University of Oxford 2 Department of Computer Science, University of
Oxford

DOI: 10.21105/joss.01716

Software
• Review
• Repository
• Archive

Editor: Jed Brown
Reviewers:

• @jmlarson1
• @gonsie

Submitted: 01 August 2019
Published: 07 March 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The development of high-throughput techniques in the biological sciences has resulted in
an abundance of experimental data. At the same time, mathematical models are becoming
increasingly popular in the biological sciences. Combined, these parallel advances have the
potential to greatly expand our understanding of biological processes through mathematical
modelling and data-driven parameter inference. When the data are noisy or the mathematical
model is inherently stochastic, we can apply Bayesian methods for parameter inference and
model selection. Moreover, even when the likelihood function is unknown or intractable, it
is still possible to make progress by applying a method known as approximate Bayesian
computation (ABC) (Marjoram, Molitor, Plagnol, & Tavare, 2003; Toni, Welch, Strelkowa,
Ipsen, & Stumpf, 2009).
The drawback of ABC methods is that they require many model simulations, which quickly
becomes a bottleneck when simulations are computationally expensive. Fortunately, some
ABC algorithms have a simulation workload that is embarrassingly parallel, or proceed through
a sequence of embarrassingly parallel simulation workloads. These algorithms, ABC rejection
and ABC sequential Monte Carlo (SMC) specifically, can be parallelised to dramatically reduce
computation times (Toni et al., 2009). Therefore, parallel ABC methods are a natural choice
for leveraging “big data” and “big compute” for parameter inference.
There are a number of software tools for ABC already available. However, some were designed
for particular classes of domain-specific models. For instance, DIYABC (Cornuet et al., 2014) is
a comprehensive software package for inference in population genetics, and includes a graphical
user interface. Another example is ABC-SysBio (Liepe et al., 2010), a Python package for
inferring the parameters of dynamical models of biochemical systems based on ordinary or
stochastic differential equations. Other software tools are modular and can be used with
any type of model, but do not scale well with computational resources. For instance, the R
package abc (Csilléry, François, & Blum, 2012) can handle arbitrary models, but does not
parallelise simulations. ABCtoolbox (Wegmann, Leuenberger, Neuenschwander, & Excoffier,
2010) is a command-line tool for running ABC algorithms on models that are supplied as
command-line programs, but it does not support explicit parallelisation. For an overview of
general-purpose ABC software, see Kousathanas, Duchen, & Wegmann (2018).
More recently, parallel ABC has been implemented successfully to accelerate inference in a
computationally intensive problem (Jagiella, Rickert, Theis, & Hasenauer, 2017). However,
the implementation was problem- and architecture-specific and thus could not be applied
more generally. In response, the Python package pyABC (Klinger, Rickert, & Hasenauer,
2018) was developed as a more flexible implementation of parallel ABC, supporting shared-
and distributed-memory computing. In principle, pyABC can be used with any type of model,
but its computational implementation must be expressed as a Python function. This poses a

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

1

https://doi.org/10.21105/joss.01716
https://github.com/openjournals/joss-reviews/issues/1716
https://github.com/ThomasPak/pakman
https://doi.org/10.5281/zenodo.3697312
https://jedbrown.org
https://github.com/jmlarson1
https://github.com/gonsie
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01716


problem when the user develops their model in a programming language other than Python
or is using an external software package that cannot easily be adapted to Python.
Pakman is a parallel ABC manager that is designed to be modular at the systems-level, as
opposed to the application-level. Furthermore, Pakman is also designed to be portable and
efficient. Pakman is written in C++11 (The C++ Standards Committee, 2011), and relies
on the Message Passing Interface (MPI) library, standard MPI-3.1 (Message Passing Interface
Forum, 2015), for parallelisation. We chose C++11 because of its native support for MPI
and POSIX system calls, high-level programming language features, and efficiency. Moreover,
we chose MPI as the platform for parallelisation because it is a well-established standard for
distributed computing that has been implemented on a wide variety of systems, ranging from
multi-core machines to large computational clusters.
In summary, Pakman was made for performing likelihood-free inference when model simula-
tions are computationally expensive. The lack of an analytical likelihood requires the applica-
tion of ABC methods, and the computational cost of individual simulations merits a parallel
approach to decrease the time to solution. Moreover, in order to be as modular as possible,
models are specified as black-box programs. The target audience consists of researchers who
want to parameterise a computationally demanding stochastic model based on experimental
data.

Modularity

Pakman is designed around a modular framework where problem-specific tasks are performed
by user executables. These are executables (binaries or scripts) that are supplied by the
user, which are then invoked by Pakman using the system calls fork() and exec(). Further-
more, Pakman communicates with user executables through their standard input and standard
output.
Conceptually, user executables serve the same role as functions in programming languages;
they are called with some input, perform a computational task and return an output. The
difference is that they are treated as black boxes that are not constrained to any program-
ming language. The user can therefore use any language or software package they desire to
implement user executables. As long as the model simulation can be executed in the shell, or
wrapped in a shell script, it can be used with Pakman.

Efficiency

The parallel architecture of Pakman is based on the Master–Worker model, where a Master
process dispatches jobs to a pool of Worker processes, ensuring that Workers are busy at all
times. In our case, each job is a single simulation and a Worker is an instance of the simulator
user executable. The choice of MPI for parallelisation prevents us from directly applying the
Master–Worker model however; a Worker cannot simultaneously be an MPI process and an
instance of a user executable. If the Worker were an MPI process, the simulation would have
to be compiled into Pakman, breaking the modular framework.
Our solution is to implement a layer of “Managers” between the Master and Workers, resulting
in a Master–Manager–Worker architecture. These Managers are parallel MPI processes
that communicate with the Master through MPI and fork Workers as user executables to
perform the actual work. Hence, the Master and Manager processes collectively form a
parallel infrastructure from which processes are spawned to perform simulations.
Further efficiency improvements are achieved by implementing the Master and Managers with
event-based loops. This means that the Master and Manager processes are asleep most of the
time and only take action when an event requires it (e.g. a Worker has finished its simulation
and wants to report its results), leaving the CPU to focus on running simulations.

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

2

https://doi.org/10.21105/joss.01716


Portability

As highlighted earlier, Pakman is written in C++11 and uses MPI for parallelisation. Moreover,
we use CMake, a cross-platform tool, to manage the build process. As a result, Pakman can
be built and used on wide variety of systems with few dependencies, making it a very portable
tool. Travis CI is used to continuously test Pakman on Linux (Ubuntu Xenial distribution),
as well as macOS (version 10.13). Details on the Travis CI configuration can be found in the
code repository.

Illustrative examples

Pakman comes with three examples that demonstrate its capabilities. In the first example, a
biased coin with an unknown probability to land on heads, q, is flipped 20 times and lands
on heads five times. This example is simple enough that the likelihood for the parameter
of interest (q) and thus the posterior distribution, can be written down analytically, as the
number of heads obeys a binomial distribution. Therefore, numerical results can be compared
with the analytical solution to verify correctness of the ABC methods. In Figure 1, we show
the results of applying the ABC rejection method and the ABC SMC method.

Figure 1: The computed posterior distributions for q obtained using the ABC rejection method (left)
and the ABC SMC method (right). We chose a standard uniform distribution as the prior distribution.
For the ABC rejection method, we used a tolerance of zero and obtained 10,000 accepted samples.
For the ABC SMC method, we used a normal distribution with a standard deviation of 0.3 as the
perturbation kernel. The tolerance series was ⟨2, 1, 0⟩ and the population size was 10,000. For both
methods, the computed distributions closely fit the analytical solution, validating our implementation.

The second example involves a dynamic model for the spread of an infectious disease that
confers no immunity to the host after recovery. Representing susceptible individuals by S and
infected individuals by I, the SIS model we consider is given by

S + I
β−→ 2I,

I
γ−→ S.

The first reaction represents infection of a susceptible individual by an infected individual and
the second reaction describes the recovery of an infected individual. We observe the number
of susceptible and infected individuals at a series of fixed time points and our goal is to infer

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

3

https://doi.org/10.21105/joss.01716


the parameters β and γ. The exact likelihood is feasible to compute when the total number
of individuals is relatively small, so here too we can compare numerical and analytical results.
The results of running the ABC SMC method are given in Figure 2.

Figure 2: The computed (left) and analytical (right) bivariate posterior distribution for β and γ. We
obtained the computed posterior using the ABC SMC method. We used a uniform prior for both
parameters and used normally distributed perturbation kernels to perturb them independently, with
standard deviations 0.006 and 0.2 for β and γ, respectively. The tolerance series was ⟨75, 70, . . . , 35⟩
and the population size was 10,000. We obtained the analytical posterior by numerically computing
the transition probabilities of the corresponding discrete-state continuous-time Markov chain. The
computed and analytical posteriors do not correspond exactly because we used a nonzero tolerance.
See the GitHub wiki for more details.

In the final example, we use a cell-based model of epithelial tissue growth to infer the average
cell cycle time, tcycle, from the number of cells that we observe after letting an initial population
of four cells grow and divide for a fixed period of time. The model was implemented in Chaste,
a software library for computational physiology and biology (Mirams et al., 2013) that includes
a range of cell-based models (Osborne, Fletcher, Pitt-Francis, Maini, & Gavaghan, 2017). This
example demonstrates that Pakman is flexible enough to run simulations implemented using
established scientific software packages and libraries. We used Pakman to run the ABC SMC
method on this example and obtained the posterior histogram shown in Figure 3.

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

4

https://doi.org/10.21105/joss.01716


Figure 3: Left: an example simulation of the cell-based model. Right: the approximate posterior
distribution for tcycle, computed using the ABC SMC method. We used a uniform prior and a normally
distributed perturbation kernel with a standard deviation of 1. The tolerance series was ⟨4, 3, 2, 1, 0⟩
and the population size was 2,000. See the GitHub wiki for more details.

Future development

At the current time, the ABC rejection method and the ABC SMC method have been imple-
mented in Pakman. These are the most widely used ABC algorithms, as well as the easiest
to parallelise. Nevertheless, the software architecture of Pakman was designed with object-
oriented programming to facilitate extending Pakman to include other ABC algorithms. These
include variations of ABC SMC that employ adaptive proposal kernels to improve acceptance
rates, such as ABC population Monte Carlo (Beaumont, Cornuet, Marin, & Robert, 2009),
or further generalisations thereof (Filippi, Barnes, Cornebise, & Stumpf, 2013).
There are also ABC algorithms that are not directly related to ABC SMC, such as ABC Markov
Chain Monte Carlo (MCMC) (Marjoram et al., 2003), and ABC parallel tempering (Baragatti,
Grimaud, & Pommeret, 2013). The latter method is inspired by a Monte Carlo method for
simulating physical systems. We aim to implement these advanced ABC algorithms in the
near future. Furthermore, we plan to update Pakman with new parallel ABC algorithms as
they are introduced to the field of ABC.
The design of Pakman also lends itself well to systematically exploring the parameter space of
models in a non-Bayesian context. In this case, Pakman functions as an engine to parallelise
simulation workloads where the model needs to be evaluated for a large number of parameter
sets and/or initial conditions. We have implemented a parameter sweep method that leverages
Pakman’s modular framework and parallel architecture to achieve this. Using Pakman to
parallelise parameter sweeps has the potential to greatly accelerate the parameter sensitivity
analysis of models where a large range of parameter sets needs to be considered, such as
models of cardiac electrophysiology (Britton et al., 2013; Lawson et al., 2018).

Acknowledgements

Thomas Pak was supported by funding from the Biotechnology and Biological Sciences Re-
search Council (BBSRC) via grant number BB/M011224/1.

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

5

https://doi.org/10.21105/joss.01716


Ruth E. Baker is a Royal Society Wolfson Research Merit Award holder and a Lever-
hulme Research Fellow, and also acknowledges the BBSRC for funding via grant number
BB/R000816/1.

References

Baragatti, M., Grimaud, A., & Pommeret, D. (2013). Likelihood-free parallel tempering.
Statistics and Computing, 23(4), 535–549. doi:10.1007/s11222-012-9328-6

Beaumont, M. A., Cornuet, J. M., Marin, J. M., & Robert, C. P. (2009). Adaptive approximate
Bayesian computation. Biometrika, 96(4), 983–990. doi:10.1093/biomet/asp052

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J.,
& Rodriguez, B. (2013). Experimentally calibrated population of models predicts and
explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the
National Academy of Sciences, 110(23), E2098–E2105. doi:10.1073/pnas.1304382110

Cornuet, J. M., Pudlo, P., Veyssier, J., Dehne-Garcia, A., Gautier, M., Leblois, R., Marin, J.
M., et al. (2014). DIYABC v2.0: a software to make approximate Bayesian computation
inferences about population history using single nucleotide polymorphism, DNA sequence
and microsatellite data. Bioinformatics, 30(8), 1187–1189. doi:10.1093/bioinformatics/
btt763

Csilléry, K., François, O., & Blum, M. G. B. (2012). abc: an R package for approximate
Bayesian computation (ABC). Methods in Ecology and Evolution, 3(3), 475–479. doi:10.
1111/j.2041-210X.2011.00179.x

Filippi, S., Barnes, C. P., Cornebise, J., & Stumpf, M. P. H. (2013). On optimality of kernels
for approximate Bayesian computation using sequential Monte Carlo. Statistical Applica-
tions in Genetics and Molecular Biology, 12(1), 87–107. doi:10.1515/sagmb-2012-0069

Jagiella, N., Rickert, D., Theis, F. J., & Hasenauer, J. (2017). Parallelization and high-
performance computing enables automated statistical inference of multi-scale models. Cell
Systems, 4(2), 194–206. doi:10.1016/j.cels.2016.12.002

Klinger, E., Rickert, D., & Hasenauer, J. (2018). pyABC: distributed, likelihood-free inference.
Bioinformatics, 34(20), 3591–3593. doi:10.1093/bioinformatics/bty361

Kousathanas, A., Duchen, P., & Wegmann, D. (2018). A guide to general-purpose approx-
imate Bayesian computation software. In Handbook of approximate Bayesian computa-
tion (pp. 369–414). Chapman and Hall/CRC. Retrieved from http://arxiv.org/abs/1806.
08320

Lawson, B. A. J., Drovandi, C. C., Cusimano, N., Burrage, P., Rodriguez, B., & Burrage, K.
(2018). Unlocking data sets by calibrating populations of models to data density: A study
in atrial electrophysiology. Science Advances, 4(1). doi:10.1126/sciadv.1701676

Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., & Stumpf, M. P. H. (2010).
ABC-SysBio–approximate Bayesian computation in Python with GPU support. Bioinfor-
matics, 26(14), 1797–1799. doi:10.1093/bioinformatics/btq278

Marjoram, P., Molitor, J., Plagnol, V., & Tavare, S. (2003). Markov chain Monte Carlo
without likelihoods. Proceedings of the National Academy of Sciences of the United
States of America, 100(26), 15324–15328. doi:10.1073/pnas.0306899100

Message Passing Interface Forum. (2015). MPI : A Message-Passing Interface Standard,
Version 3.1. Knoxville: University of Tennessee.

Mirams, G. R., Arthurs, C. J., Bernabeu, M. O., Bordas, R., Cooper, J., Corrias, A., Davit,
Y., et al. (2013). Chaste: an open source C++ library for computational physiology and
biology. PLoS Computational Biology, 9(3), e1002970. doi:10.1371/journal.pcbi.1002970

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

6

https://doi.org/10.1007/s11222-012-9328-6
https://doi.org/10.1093/biomet/asp052
https://doi.org/10.1073/pnas.1304382110
https://doi.org/10.1093/bioinformatics/btt763
https://doi.org/10.1093/bioinformatics/btt763
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1515/sagmb-2012-0069
https://doi.org/10.1016/j.cels.2016.12.002
https://doi.org/10.1093/bioinformatics/bty361
http://arxiv.org/abs/1806.08320
http://arxiv.org/abs/1806.08320
https://doi.org/10.1126/sciadv.1701676
https://doi.org/10.1093/bioinformatics/btq278
https://doi.org/10.1073/pnas.0306899100
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.21105/joss.01716


Osborne, J. M., Fletcher, A. G., Pitt-Francis, J. M., Maini, P. K., & Gavaghan, D. J. (2017).
Comparing individual-based approaches to modelling the self-organization of multicellu-
lar tissues. PLoS Computational Biology, 13(2), e1005387. doi:10.1371/journal.pcbi.
1005387

The C++ Standards Committee. (2011). ISO/IEC 14882:2011, standard for programming
language C++. Geneva: International Organization for Standardization. Retrieved from
https://www.iso.org/standard/50372.html

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate
Bayesian computation scheme for parameter inference and model selection in dynamical
systems. Journal of the Royal Society Interface, 6(31), 187–202. doi:10.1098/rsif.2008.
0172

Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010). ABCtoolbox: a
versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 11. doi:10.
1186/1471-2105-11-116

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software,
5(47), 1716. https://doi.org/10.21105/joss.01716

7

https://doi.org/10.1371/journal.pcbi.1005387
https://doi.org/10.1371/journal.pcbi.1005387
https://www.iso.org/standard/50372.html
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1186/1471-2105-11-116
https://doi.org/10.1186/1471-2105-11-116
https://doi.org/10.21105/joss.01716

	Summary
	Modularity
	Efficiency
	Portability

	Illustrative examples
	Future development
	Acknowledgements
	References

