
MiSTree: a Python package for constructing and
analysing Minimum Spanning Trees
Krishna Naidoo1

1 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E
6BT, UK

DOI: 10.21105/joss.01721

Software
• Review
• Repository
• Archive

Submitted: 27 August 2019
Published: 17 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The minimum spanning tree (MST), a graph constructed from a distribution of points, draws
lines between pairs of points so that all points are linked in a single skeletal structure that
contains no loops and has minimal total edge length. The MST has been used in a broad range
of scientific fields such as particle physics (to distinguish classes of events in collider collisions,
see Rainbolt & Schmitt (2017)), in astronomy (to detect mass segregation in star clusters, see
Allison et al. (2009)) and cosmology (to search for filaments in the cosmic web, see Alpaslan
et al. (2014)). Its success in these fields has been driven by its sensitivity to the spatial
distribution of points and the patterns within. MiSTree, a public Python package, allows a
user to construct the MST in a variety of coordinates systems, including Celestial coordinates
used in astronomy. The package enables the MST to be constructed quickly by initially using
a k-nearest neighbour graph (kNN, rather than a matrix of pairwise distances) which is then
fed to Kruskal’s algorithm (Kruskal, 1956) to construct the MST. MiSTree enables a user to
measure the statistics of the MST and provides classes for binning the MST statistics (into
histograms) and plotting the distributions. Applying the MST will enable the inclusion of high-
order statistics information from the cosmic web which can provide additional information to
improve cosmological parameter constraints (Naidoo et al., 2019). This information has not
been fully exploited due to the computational cost of calculating N -point statistics. MiSTree
was designed to be used in cosmology but could be used in any field which requires extracting
non-Gaussian information from point distributions.

Motivation

Studies of point distributions often measure their 2-point statistics (i.e. the distribution of
distances between pairs of points) which are then compared to theoretical models. This is
a powerful technique and has been used very successfully in the field of cosmology to study
the early Universe and the large scale distribution of galaxies. Unfortunately this statistic can
only fully describe a distribution that is Gaussian, if it is non-Gaussian then the 2-point is
no longer sufficient. The conventional method to incorporate non-Gaussian information is to
look at the distribution’s N -point statistic (if N=3 we look at the distribution of triangles, if
N=4 we look at the distribution of quadrilaterals and so on). This method is well motivated
as in principle all the information that can describe a distribution of points is contained within
its N -point statistics (see Szapudi & Szalay (1998)). However, calculating N -point statistics
even for N>3 becomes quickly intractable for large data sets.
The MST offers an alternative approach; the MST graph draws lines between pairs of points
so that all points are linked in a single skeletal structure that contains no loops and has
minimal total edge length. Unlike N -point statistics, that typically scale by O(nN) for n
points, the MST (computed using the Kruskal algorithm (Kruskal, 1956) which sequentially

Naidoo, (2019). MiSTree: a Python package for constructing and analysing Minimum Spanning Trees. Journal of Open Source Software, 4(42),
1721. https://doi.org/10.21105/joss.01721

1

https://doi.org/10.21105/joss.01721
https://github.com/openjournals/joss-reviews/issues/1721
https://github.com/knaidoo29/mistree
https://doi.org/10.5281/zenodo.3495008
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01721

adds edges, from shortest to longest, with the condition that the added edge does not form a
loop) can be constructed much faster (at best O(n log n)). While the MST does not contain
all the information present in N -point statistics, it enables some of this information to be
captured and allows the identification of skeletal patterns, as such it has found a broad range
of applications in physics: such as finding filaments in the distribution of galaxies (Alpaslan
et al., 2014), classifying particle physics collisions (Rainbolt & Schmitt, 2017) and mass
segregation in star clusters (Allison et al., 2009). The MST has also been used in a number
of other scientific field such as computer science, sociology and epidemiology.
While algorithms to construct the minimum spanning tree are well known (e.g. Prim (1957)
and Kruskal (1956)) implementations of these often require the input of a matrix of pairwise
distances. For a large data set the creation of this matrix (with n2 elements) can be a signif-
icant strain on memory while also making the construction of the MST slower (O(n2 log n)).

Figure 1: An example of how MiSTree constructs the MST from a distribution of points (shown on
the left). MiSTree first begins by constructing a kNN graph which links all points to their nearest k
neighbours (shown in the centre) and then runs the Kruskal algorithm to construct the MST (shown
on the right).

MiSTree

MiSTree is a public Python package for the construction and analysis of the MST. The
package initially creates a k-nearest neighbour graph (kNN, a graph that links each point to
the nearest k neighbours, using scikit-learn’s kneighbours_graph function) which improves
speed by limiting the number of considered edges from n2 to kn (where k≪n) and then runs
the Kruskal algorithm (Kruskal, 1956) (using scipy’s minimum_spanning_tree function).
The stages of the MST construction are shown in Figure 1.
The MST can be constructed from data provided in 2/3 dimensions and in tomographic (on
a unit sphere) or spherical polar coordinates. The weights of the edges are assumed to be the
distances between points; i.e. the Euclidean distance for 2/3 dimension and spherical polar
coordinates, and angular distances for tomographic coordinates. Furthermore, the package
can very quickly measure the standard statistics:

• degree (d) – the number of edges attached to each node.
• edge length (l) – the length of edges in the MST.

While also being able to measure the statistics of branches, which are defined as chains of
edges connected with degree = 2:

• branch length (b) – the sum of the lengths of member edges.
• branch shape (s) – the straight line distance between the tips of branches divided by

the branch length.

Naidoo, (2019). MiSTree: a Python package for constructing and analysing Minimum Spanning Trees. Journal of Open Source Software, 4(42),
1721. https://doi.org/10.21105/joss.01721

2

https://doi.org/10.21105/joss.01721

The statistics calculated by MiSTree are extensively explored in Naidoo et al. (2019) and found
to significantly improve constraints on cosmological parameters when tested on simulations.

Figure 2: Histograms of the distribution of the MST statistics degree (d), edge length (l), branch
length (b) and branch shape (s) for a Levy Flight and Adjusted Levy Flight distribution in comparison
to a set of random distribution (details of which are provided in Naidoo et al., 2019) in 3 dimensions.

Basic Usage

To construct the MST using MiSTree from a distribution of points in 2 dimensions you would
use the following commands:
import mistree as mist

initialise MiSTree Minimum Spanning Tree class
mst = mist.GetMST(x=x, y=y)
mst.construct_mst()

Once the MST is constructed it can either be used to look for features in the distribution
or to measure statistics of the graph which in turn tell us about how points have been
distributed. MiSTree can measure four statistics by default, which can be calculated directly
after initialising the GetMST class (an example of the distribution of these statistics is shown
in Figure 2):
d, l, b, s = mst.get_stats()

The source code can be found on github while documentation and more complicated tutorials
are provided here.

Dependencies

Dependencies for MiSTree include the Python modules numpy (Oliphant, 2006), matplotlib
(Hunter, 2007), scipy (Jones, Oliphant, Peterson, & others, 2001), scikit-learn (Pedregosa

Naidoo, (2019). MiSTree: a Python package for constructing and analysing Minimum Spanning Trees. Journal of Open Source Software, 4(42),
1721. https://doi.org/10.21105/joss.01721

3

https://github.com/knaidoo29/mistree
https://knaidoo29.github.io/mistreedoc/
https://doi.org/10.21105/joss.01721

et al., 2011) and f2py (Peterson, 2009) (the latter of which is used to compile Fortran
subroutines).

Acknowledgement

I thank Ofer Lahav and Lorne Whiteway for their guidance and suggestions in developing this
package and acknowledge support from the Science and Technology Facilities Council grant
ST/N50449X.

References

Allison, R. J., Goodwin, S. P., Parker, R. J., Portegies Zwart, S. F., de Grijs, R., & Kouwen-
hoven, M. B. N. (2009). Using the minimum spanning tree to trace mass segregation, 395,
1449–1454. doi:10.1111/j.1365-2966.2009.14508.x
Alpaslan, M., Robotham, A. S. G., Driver, S., Norberg, P., Baldry, I., Bauer, A. E., Bland-
Hawthorn, J., et al. (2014). Galaxy And Mass Assembly (GAMA): the large-scale structure
of galaxies and comparison to mock universes, 438, 177–194. doi:10.1093/mnras/stt2136
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55
Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific tools
for Python. Retrieved from http://www.scipy.org/
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1), 48–50. doi:10.2307/
2033241
Naidoo, K., Whiteway, L., Massara, E., Gualdi, D., Lahav, O., Viel, M., Gil-Marı́n, H., et al.
(2019). Beyond two-point statistics: using the Minimum Spanning Tree as a tool for cosmol-
ogy. arXiv e-prints, arXiv:1907.00989. Retrieved from http://arxiv.org/abs/1907.00989
Oliphant, T. (2006). NumPy: A guide to NumPy. USA: Trelgol Publishing. Retrieved from
http://www.numpy.org/
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.
Peterson, P. (2009). F2PY; a tool for connecting fortran and python programs. Int. J.
Comput. Sci. Eng., 4(4), 296–305. doi:10.1504/IJCSE.2009.029165
Prim, R. C. (1957, November). Shortest connection networks and some generalizations. The
Bell System Technical Journal. doi:10.1002/j.1538-7305.1957.tb01515.x
Rainbolt, J. L., & Schmitt, M. (2017). The Use of Minimal Spanning Trees in Particle Physics.
JINST, 12(02), P02009. doi:10.1088/1748-0221/12/02/P02009
Szapudi, I., & Szalay, A. S. (1998). A New Class of Estimators for the N-Point Correlations,
494(1), L41–L44. doi:10.1086/311146

Naidoo, (2019). MiSTree: a Python package for constructing and analysing Minimum Spanning Trees. Journal of Open Source Software, 4(42),
1721. https://doi.org/10.21105/joss.01721

4

https://doi.org/10.1111/j.1365-2966.2009.14508.x
https://doi.org/10.1093/mnras/stt2136
https://doi.org/10.1109/MCSE.2007.55
http://www.scipy.org/
https://doi.org/10.2307/2033241
https://doi.org/10.2307/2033241
http://arxiv.org/abs/1907.00989
http://www.numpy.org/
https://doi.org/10.1504/IJCSE.2009.029165
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1088/1748-0221/12/02/P02009
https://doi.org/10.1086/311146
https://doi.org/10.21105/joss.01721

	Summary
	Motivation
	MiSTree
	Basic Usage
	Dependencies
	Acknowledgement
	References

