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Summary

Pentadiagonal linear systems of equations arise in many areas of science and engineering: e.g.,
when solving differential equations, in interpolation problems, or in numerical schemes like
finite differences. A specific example is the radial symmetric groundwater flow equation with
consecutive rings of different constant transmissivity and radial boundary conditions, which
can be expressed as a pentadiagonal equation system (Avci & Ufuk Sahin, 2014; Sindalovskiy,
2017).
Pentadiagonal matrices are banded, being determined by their diagonal, first and second upper
minor-diagonals, as well as first and second lower minor-diagonals. These matrices are sparse
and can be stored efficiently in a flattened matrix with 5n− 6 scalars.
A pentadiagonal linear system is given by the equation: M ·X = Y , where M is a banded
quadratic n× n matrix of the form:

M =



d1 d
(1)
1 d

(2)
1 0 · · · · · · · · · · · · · · · 0

d
(−1)
2 d2 d

(1)
2 d

(2)
2 0 · · · · · · · · · · · · 0

d
(−2)
3 d

(−1)
3 d3 d

(1)
3 d

(2)
3 0 · · · · · · · · · 0

0 d
(−2)
4 d

(−1)
4 d4 d

(1)
4 d

(2)
4 0 · · · · · · 0

... . . . . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · · · · · · · 0 d

(−2)
n−2 d

(−1)
n−2 dn−2 d

(1)
n−2 d

(2)
n−2

0 · · · · · · · · · · · · 0 d
(−2)
n−1 d

(−1)
n−1 dn−1 d

(1)
n−1

0 · · · · · · · · · · · · · · · 0 d
(−2)
n d

(−1)
n dn


Here, di are the diagonal entries and d

(j)
i represent the j-th minor diagonal.

Recently, Askar & Karawia (2015) presented two algorithms to solve the linear systems of
equations for X, PTRANS-I and PTRANS-II, applying first transformation to a triangular
matrix and then, respectively, backward and forward substitution. pentapy provides Cython
(Behnel et al., 2011) implementations of these algorithms and a set of tools to convert matrices
to row-wise or column-wise flattened matrices and vice versa.
Since the algorithms have weak points, for example when the first or last diagonal entry is
zero, pentapy also provides interfaces to solvers from SciPy (Jones, Oliphant, Peterson, &
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others, 2001–2019), like scipy.linalg.solve_banded (Lapack) and scipy.sparse.lina
lg.spsolve. The solver can be selected by a keyword argument.
The performance comparison in figure 1, done with perfplot (Schlömer, 2019), shows that
the implementations of pentapy are almost one order of magnitude faster than the SciPy
algorithms for banded or sparse matrices. The linear algebra solver of NumPy (Oliphant &
others, 2019) served as a standard reference, which disregards the special structure of the
equation system.

Figure 1: Performance comparison of pentapy, Lapack, SciPy and NumPy routines depending on the
matrix size. (system specifications: i5-6200U with 2.3GHz, 16GB RAM)

pentapy is designed to provide a fast solver for the special case of a pentadiagonal linear sys-
tem. To the best of the author’s knowledge, this package outperforms the current algorithms
for solving pentadiagonal systems in Python. The solver can handle different input formats
of the coefficient matrix, i.e., a flattend matrix or a quadratic matrix.
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