
pentapy: A Python toolbox for pentadiagonal linear
systems
Sebastian Müller1, 2

1 Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental
Research, Leipzig, Germany 2 Institute of Earth and Environmental Sciences, University Potsdam,
Potsdam, Germany

DOI: 10.21105/joss.01759

Software
• Review
• Repository
• Archive

Submitted: 18 September 2019
Published: 08 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Pentadiagonal linear systems of equations arise in many areas of science and engineering: e.g.,
when solving differential equations, in interpolation problems, or in numerical schemes like
finite differences. A specific example is the radial symmetric groundwater flow equation with
consecutive rings of different constant transmissivity and radial boundary conditions, which
can be expressed as a pentadiagonal equation system (Avci & Ufuk Sahin, 2014; Sindalovskiy,
2017).
Pentadiagonal matrices are banded, being determined by their diagonal, first and second upper
minor-diagonals, as well as first and second lower minor-diagonals. These matrices are sparse
and can be stored efficiently in a flattened matrix with 5n− 6 scalars.
A pentadiagonal linear system is given by the equation: M ·X = Y , where M is a banded
quadratic n× n matrix of the form:

M =

d1 d
(1)
1 d

(2)
1 0 · · · · · · · · · · · · · · · 0

d
(−1)
2 d2 d

(1)
2 d

(2)
2 0 · · · · · · · · · · · · 0

d
(−2)
3 d

(−1)
3 d3 d

(1)
3 d

(2)
3 0 · · · · · · · · · 0

0 d
(−2)
4 d

(−1)
4 d4 d

(1)
4 d

(2)
4 0 · · · · · · 0

... ...

... ...

... ...
0 · · · · · · · · · 0 d

(−2)
n−2 d

(−1)
n−2 dn−2 d

(1)
n−2 d

(2)
n−2

0 · · · · · · · · · · · · 0 d
(−2)
n−1 d

(−1)
n−1 dn−1 d

(1)
n−1

0 · · · · · · · · · · · · · · · 0 d
(−2)
n d

(−1)
n dn

Here, di are the diagonal entries and d

(j)
i represent the j-th minor diagonal.

Recently, Askar & Karawia (2015) presented two algorithms to solve the linear systems of
equations for X, PTRANS-I and PTRANS-II, applying first transformation to a triangular
matrix and then, respectively, backward and forward substitution. pentapy provides Cython
(Behnel et al., 2011) implementations of these algorithms and a set of tools to convert matrices
to row-wise or column-wise flattened matrices and vice versa.
Since the algorithms have weak points, for example when the first or last diagonal entry is
zero, pentapy also provides interfaces to solvers from SciPy (Jones, Oliphant, Peterson, &

Müller, (2019). pentapy: A Python toolbox for pentadiagonal linear systems. Journal of Open Source Software, 4(42), 1759. https://doi.org/
10.21105/joss.01759

1

https://doi.org/10.21105/joss.01759
https://github.com/openjournals/joss-reviews/issues/1759
https://github.com/GeoStat-Framework/pentapy
https://doi.org/10.5281/zenodo.3474843
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01759
https://doi.org/10.21105/joss.01759

others, 2001–2019), like scipy.linalg.solve_banded (Lapack) and scipy.sparse.lina
lg.spsolve. The solver can be selected by a keyword argument.
The performance comparison in figure 1, done with perfplot (Schlömer, 2019), shows that
the implementations of pentapy are almost one order of magnitude faster than the SciPy
algorithms for banded or sparse matrices. The linear algebra solver of NumPy (Oliphant &
others, 2019) served as a standard reference, which disregards the special structure of the
equation system.

Figure 1: Performance comparison of pentapy, Lapack, SciPy and NumPy routines depending on the
matrix size. (system specifications: i5-6200U with 2.3GHz, 16GB RAM)

pentapy is designed to provide a fast solver for the special case of a pentadiagonal linear sys-
tem. To the best of the author’s knowledge, this package outperforms the current algorithms
for solving pentadiagonal systems in Python. The solver can handle different input formats
of the coefficient matrix, i.e., a flattend matrix or a quadratic matrix.

Acknowledgements

I acknowledge the supervision by Prof. Sabine Attinger, Prof. Alraune Zech, Prof. Peter
Dietrich and Dr. Falk Heße and herewith want to thank them for their trust and support. I
also want to thank Dr. Lennart Schüler for his constant help and the pleasant partnership
during the work on the GeoStat Framework. This research was funded by the German Federal
Environmental Foundation.

Müller, (2019). pentapy: A Python toolbox for pentadiagonal linear systems. Journal of Open Source Software, 4(42), 1759. https://doi.org/
10.21105/joss.01759

2

https://doi.org/10.21105/joss.01759
https://doi.org/10.21105/joss.01759

References

Askar, S., & Karawia, A. (2015). On solving pentadiagonal linear systems via transformations.
Mathematical Problems in Engineering, 2015. doi:10.1155/2015/232456
Avci, C. B., & Ufuk Sahin, A. (2014). Assessing radial transmissivity variation in hetero-
geneous aquifers using analytical techniques. Hydrological Processes, 28(23), 5739–5754.
doi:10.1002/hyp.10064
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:
The best of both worlds. Computing in Science Engineering, 13(2), 31–39. doi:10.1109/
MCSE.2010.118
Jones, E., Oliphant, T., Peterson, P., & others. (2001–2019). SciPy: Open source scientific
tools for Python. Retrieved from http://www.scipy.org/
Oliphant, T., & others. (2019). NumPy. GitHub repository. https://github.com/numpy/
numpy; GitHub.
Schlömer, N. (2019). Perfplot. GitHub repository. https://github.com/nschloe/perfplot;
GitHub.
Sindalovskiy, L. N. (2017). Aquifer test solutions. Springer International Publishing. doi:10.
1007/978-3-319-43409-4

Müller, (2019). pentapy: A Python toolbox for pentadiagonal linear systems. Journal of Open Source Software, 4(42), 1759. https://doi.org/
10.21105/joss.01759

3

https://doi.org/10.1155/2015/232456
https://doi.org/10.1002/hyp.10064
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
http://www.scipy.org/
https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://github.com/nschloe/perfplot
https://doi.org/10.1007/978-3-319-43409-4
https://doi.org/10.1007/978-3-319-43409-4
https://doi.org/10.21105/joss.01759
https://doi.org/10.21105/joss.01759

	Summary
	Acknowledgements
	References

