
PYCV: a PLUMED 2 Module Enabling the Rapid
Prototyping of Collective Variables in Python
Toni Giorgino1

1 Institute of Biophysics (IBF-CNR), National Research Council of Italy
DOI: 10.21105/joss.01773

Software
• Review
• Repository
• Archive

Submitted: 21 August 2019
Published: 11 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Collective variables (CVs) are functions of the coordinates of particles in a molecular system.
The choice of CV is crucial to capture relevant degrees of freedom of the model being simulated
(Barducci, Bonomi, & Parrinello, 2011). This is especially important when employing biased
sampling techniques such as umbrella sampling or metadynamics (Laio & Parrinello, 2002;
Torrie & Valleau, 1977), which apply generalized forces to CVs to enhance the sampling
of events otherwise not observable by direct simulation. CVs may be simple geometrical
observables (distances, angles, torsions, etc.), but often they are more complex functions
designed to capture structural determinants, such as tertiary and quaternary structure of
proteins, experimental observables, crystal symmetries, etc. (Bonomi & Camilloni, 2017;
Branduardi, Gervasio, & Parrinello, 2007; Pipolo et al., 2017).
Iterative development of CVs therefore accounts for most of the efforts associated with the
exploration of molecular systems, and software packages implementing high-level directives to
express biasing potentials and CVs markedly simplify the task. In this regard, the PLUMED
library (Tribello, Bonomi, Branduardi, Camilloni, & Bussi, 2014) is especially relevant because
it provides numerous pre-defined functions, a lingua franca to express CV combinations, atom
groups and biasing schemes, and an active community (The PLUMED consortium, 2019).
Users willing to explore CVs beyond the pre-defined ones have to implement them in C++,
together with the corresponding (often cumbersome) derivatives (Giorgino, 2018). Compiled
code is however unwieldy for iterative analysis, because it is relatively low-level, error-prone,
and inconvenient in exploratory stages.
This paper introduces PYCV, a module for the PLUMED 2 library which enables users to
define CVs and arbitrary functions in the Python language. CV implementations may thus be
modified and tested independently of the main code, with essentially no “test latency”. Of
note, coordinates are processed as numpy arrays, making it convenient to leverage the vast
set of linear algebra and numerical algorithms provided by numpy, scipy, and many other
open-source modules. Furthermore, just-in-time compilation and reverse-mode automatic
differentiation are easily accessible using Google’s JAX library.

Usage

The PYCV module registers itself with PLUMED to provide the following actions:

• PYTHONCV, to implement single- and multi-component CVs;
• PYTHONFUNCTION, to implement arbitrary functions.

Giorgino, (2019). PYCV: a PLUMED 2 Module Enabling the Rapid Prototyping of Collective Variables in Python. Journal of Open Source
Software, 4(42), 1773. https://doi.org/10.21105/joss.01773

1

https://doi.org/10.21105/joss.01773
https://github.com/openjournals/joss-reviews/issues/1773
https://github.com/giorginolab/plumed2-pycv/
https://doi.org/10.5281/zenodo.3480171
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01773

The actions are documented in the respective inline manuals (e.g., plumed manual --acti
on PYTHONCV). In both cases, an interpreter is first started; the Python module indicated in
the IMPORT= keyword is then loaded; from it, an user-chosen function (FUNCTION=) is called
to perform the computations at each timestep. Modules can contain multiple functions and
one-time initialization.

Example

A self-explanatory example is provided for illustration below. It is equivalent to the radius of
curvature example shown in (Giorgino, 2018). Further examples are available in the manual
and in regtest/pycv.

Plumed input script

The actions are declared in the PLUMED input file (say, plumed.dat). Here, one declares
a CV labelled rc, to be computed by the Python function curvature.r(). It will receive a
3-by-3 array with the coordinates of atoms 1, 4 and 3 (orderly, as rows). The CV value will
be PRINTed, and the atoms subject to a constant generalized force pushing to increase the
curvature.

Start plumed.dat ---
rc: PYTHONCV ATOMS=1,4,3 IMPORT=curvature FUNCTION=r

PRINT ARG=rc FILE=colvar.out
RESTRAINT ARG=rc AT=0 KAPPA=0 SLOPE=1

End plumed.dat ---

Function definition

The actual function r is defined in the curvature.py file. It computes the radius of the
circle passing through three given atom coordinates (the three rows of the input argument,
with 0-based indexing). Note how matrix operations enable a readable translation of the sine
formula.
The function is expected to return two objects, i.e. the value of the CV at the given coordinates
(a scalar), and its gradient with respect to each of the 9 coordinates (a 3-by-3 array); here the
gradient function is obtained automatically. Although not directly comparable, the equivalent
C++ implementation required approximately 160 lines of non-trivial code.

Start curvature.py --
Same calculation (and results) as doi:10.1016/j.cpc.2018.02.017

Import the JAX library
import jax.numpy as np
from jax import grad, jit

Implementation of the angle function. @jit really improves speed
@jit
def r_f(x):

r21 = x[0,:]-x[1,:]
r23 = x[2,:]-x[1,:]
r13 = x[2,:]-x[0,:]

Giorgino, (2019). PYCV: a PLUMED 2 Module Enabling the Rapid Prototyping of Collective Variables in Python. Journal of Open Source
Software, 4(42), 1773. https://doi.org/10.21105/joss.01773

2

https://doi.org/10.21105/joss.01773

cos2theta = np.dot(r21,r23)**2 / (np.dot(r21,r21) * np.dot(r23,r23))
sin2theta = 1-cos2theta

R2= np.dot(r13,r13)/sin2theta/4.0
return np.sqrt(R2)

Use JAX to auto-gradient it
r_g = grad(r_f)

PLUMED will call the following function
def r(x):

return r_f(x), r_g(x)

End curvature.py ---

Conclusions

PYCV enables Python-based prototyping of CVs in PLUMED 2. This programming model
may be an advantage over standard C++-based development in that

1. functions may be prototyped in high-level language, using extensive mathematical li-
braries, without boilerplate;

2. just-in-time compilation occurs transparently: code changes incur in no compilation and
link delays; and

3. CV code may be automatically differentiated in common cases.

Acknowledgements

I would like to thank PLUMED’s lead authors (Prof. Giovanni Bussi, Prof. Carlo Camilloni,
Prof. Gareth Tribello and Prof. Massimiliano Bonomi) for inputs and discussions.

References

Barducci, A., Bonomi, M., & Parrinello, M. (2011). Metadynamics. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 1(5), 826–843. doi:10.1002/wcms.31
Bonomi, M., & Camilloni, C. (2017). Integrative structural and dynamical biology with
PLUMED-ISDB. Bioinformatics, 33(24), 3999–4000. doi:10.1093/bioinformatics/btx529
Branduardi, D., Gervasio, F. L., & Parrinello, M. (2007). From A to B in free energy space.
The Journal of Chemical Physics, 126(5), 054103. doi:10.1063/1.2432340
Giorgino, T. (2018). How to differentiate collective variables in free energy codes: Computer-
algebra code generation and automatic differentiation. Computer Physics Communications,
228, 258–263. doi:10.1016/j.cpc.2018.02.017
Laio, A., & Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the National
Academy of Sciences of the United States of America, 99(20), 12562–12566. doi:10.1073/
pnas.202427399

Giorgino, (2019). PYCV: a PLUMED 2 Module Enabling the Rapid Prototyping of Collective Variables in Python. Journal of Open Source
Software, 4(42), 1773. https://doi.org/10.21105/joss.01773

3

https://doi.org/10.1002/wcms.31
https://doi.org/10.1093/bioinformatics/btx529
https://doi.org/10.1063/1.2432340
https://doi.org/10.1016/j.cpc.2018.02.017
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.21105/joss.01773

Pipolo, S., Salanne, M., Ferlat, G., Klotz, S., Saitta, A., & Pietrucci, F. (2017). Navigating
at Will on the Water Phase Diagram. Physical Review Letters, 119(24), 245701. doi:10.
1103/PhysRevLett.119.245701
The PLUMED consortium. (2019). Promoting transparency and reproducibility in enhanced
molecular simulations. Nature Methods, 16(8), 670. doi:10.1038/s41592-019-0506-8
Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-
energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187–199.
doi:10.1016/0021-9991(77)90121-8
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., & Bussi, G. (2014). PLUMED
2: New feathers for an old bird. Computer Physics Communications, 185(2), 604–613.
doi:10.1016/j.cpc.2013.09.018

Giorgino, (2019). PYCV: a PLUMED 2 Module Enabling the Rapid Prototyping of Collective Variables in Python. Journal of Open Source
Software, 4(42), 1773. https://doi.org/10.21105/joss.01773

4

https://doi.org/10.1103/PhysRevLett.119.245701
https://doi.org/10.1103/PhysRevLett.119.245701
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.21105/joss.01773

	Summary
	Usage
	Example
	Plumed input script
	Function definition

	Conclusions
	Acknowledgements
	References

