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Summary

Models of Earth’s surface dynamics are typically designed to simulate timescales that range
from years to geologic epochs (106+ years). They represent and evolve a primary state
variable, Earth’s surface. Some applications may use other state variables (e.g., soil thickness).
A diverse array of physical and chemical processes may be present. For example, the making
and moving of water; the creation of soil and sediment from bedrock; the transport of mobile
material due to hillslope processes, river erosion, and landslides; and the deposition of that
material into the geologic archive. These models are used for applications as diverse as
understanding limits on the height of mountain ranges and predicting the erosion, transport,
and fate of contaminated material on human timescales.
A diversity of data is used to compare models with observations. These data serve as “simu-
lated equivalents”, quantities with which to assess model performance. A common observable
compared with model output is topography. High resolution topography, occasionally at two
points in time, provides a dataset rich in the spatial dimension and sparse in the temporal.
However, because model initial condition topography is not often known, we do not often
expect modeled and observed topography to line up exactly. Thus, statistical derivatives of
topography are often used. Other data sources (e.g., cosmogenic radionuclide derived erosion
rates) provide time and space integrated measures.
There is, however, no clear consensus regarding which set of simulated equivalents is most
appropriate or most successful for assessing the performance of Earth surface dynamics models.
This presents a challenge when this type of model is used in formal model analysis efforts. For
example, calibration requires a formal objective function. Under these circumstances, there
is a need for generic tools that facilitate exploration and usage of many plausibly successful
simulated equivalents. This is the need that the umami package was designed to address.

Description of umami

Umami is a package for calculating objective functions or objective function components
for Earth surface dynamics modeling. It was designed to work well with models built with
the Landlab Toolkit (Hobley et al., 2017) or with the terrainbento multi-model analysis
(Barnhart, Glade, Shobe, & Tucker, 2019). Umami is complementary to existing topographic
analysis tools such as LSDTopoTools (Clubb et al., 2017; Mudd, Attal, Milodowski, Grieve,
& Valters, 2014), TopoToolbox (Schwanghart & Kuhn, 2010; Schwanghart & Scherler, 2014)
and the Topographic Analysis Kit (Forte & Whipple, 2019). Rather than performing topo-
graphic analysis, umami is used to distill model output into a form usable by model analysis
methods such as sensitivity analysis, calibration, and validation.
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Umami offers two primary classes: a Residual, which represents the difference between model
and data, and a Metric, which is a calculated value on either model or data. The set of
currently supported calculations are found in the umami.calculations submodule. Both
the Metric and Residual classes are designed to be fully specified through a YAML-style
input-file or python Dictionary interface. Many different calculations can be accomplished
through parameter specification. This supports reproducible analysis and systematic variation
in metric construction. For example, when used with terrainbento, one input file can
describe the model run, and one input file can describe the model assessment or model-data
comparison. This streamlines model analysis applications by making driver files more re-usable
and by placing the code that accomplished calculations in the umami package rather than
within the driver file. Umami also provides multiple output formats (YAML and Dakota), the
latter of which is designed to interface with Sandia National Laboratory’s Dakota package
(Adams et al., 2019).
The novel contribution of the umami package is not primarily found in the specific calculations
accomplished (e.g., some of them are as straightforward as the mean of a state variable).
Instead it is the flexible and extensible nature of the input file format and the Metric and
Residual classes. Additionally, the package can be extended through the addition of new
calculation methods.
Two model-data comparison metrics in umami are novel. First, the joint_density_misfit
provides a misfit metric of the joint density of two state variables. This comparison measure
was inspired by the use of channel χ index value (Perron & Royden, 2013) and topographic
elevation to assess river channel long profiles (χ-z plots). While it is not clear how to best
quantify the difference between a modeled and observed χ-z plot, it is straightforward to
calculate the sum of squared residuals between the joint density of χ and topographic elevation
for a modeled and observed landscape. In umami, this comparison is generalized to the joint
density of two state variables.
Second, the discretized_misfit calculation seeks to reduce the dimension of a state
variable misfit. In some applications it is appropriate to make a direct comparison between
a measured and modeled state variable (e.g., difference measured and modeled topography).
However, if an application uses a model domain with tens of thousands of grid cells, a user
is faced with a challenging choice: either treat each residual as an individual observation or
reduce all residuals to a single value through a sum of squared residuals (or other norm). The
discretized_misfit calculation permits the identification of consistent “categories” of grid
cells based on other grid fields. A sum of squared residuals is then calculated within each of
these categories.
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