
Distant Viewing Toolkit: A Python Package for the
Analysis of Visual Culture
Taylor Arnold1 and Lauren Tilton2

1 University of Richmond, Department of Mathematics and Computer Science 2 University of
Richmond, Department of Rhetoric and Communication Studies

DOI: 10.21105/joss.01800

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @jgonggrijp
• @elektrobohemian

Submitted: 21 September 2019
Published: 20 January 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The Distant Viewing Toolkit is a Python package for the computational analysis of visual
culture. It addresses the challenges of working with moving images through the automated
extraction and visualization of metadata summarizing the content (e.g., people/actors, dia-
logue, scenes, objects) and style (e.g., shot angle, shot length, lighting, framing, sound) of
time-based media. This toolkit is optimized for two purposes: (1) scholarly inquiry of visual
culture from the humanities and social sciences, and (2) search and discovery of collections
within libraries, archives, and museums.
Many open-source projects provide implementations of state-of-the-art computer vision al-
gorithms. However, there are limited options for users looking to quickly build end-to-end
pipelines that link together common visual annotations. Those tools that do exist focus on
specific subtasks, such as as FaceNet’s recognition of faces (Schroff, Kalenichenko, & Philbin,
2015), visual embedding with PixPlot (Duhaime, 2019), and FilmColors’ analysis of color
(Flueckiger & Halter, 2018). Different algorithms require varying dependencies, different in-
put formats, and produce outputs using different schemas. Because of the rapid pace of
scholarship across the many sub-fields of computer vision, it can be difficult to determine
which algorithms to use and a significant amount of work to manually test every option.
These challenges are exacerbated when working with moving images because most available
computer vision libraries take still images as inputs.
The Distant Viewing Toolkit addresses these needs by (1) constructing an object-oriented
framework for applying a collection of algorithms to moving images, (2) packaging together
common sound and computer vision algorithms in order to provide out-of-the-box functionality
for common tasks in the computational analysis of moving images, and (3) allowing video files
alongside still images as an input. Currently provided algorithms include functionality for: shot
detection (Pal et al., 2015), object detection (Li, Zhao, & Zhang, 2018), face detection (Jiang
& Learned-Miller, 2017), face identification (Cao, Shen, Xie, Parkhi, & Zisserman, 2018),
color analysis (Karasek, Burget, Uher, Masek, & Dutta, 2015), image similarity (Szegedy,
Ioffe, Vanhoucke, & Alemi, 2017), optical flow (Farnebäck, 2003), and shot distance analysis
(Butler, 2012).
The Distant Viewing Toolkit provides two interfaces. The low-level Python API provides for
customized and advanced processing of visual data. The high-level command line interface is
designed to be accessible to users with limited programming experience. Metadata produced
by either interface can also be further aggregated and analyzed to find patterns across a corpus.
Drawing on theories of exploratory data analysis, the package includes a custom JavaScript
visualization engine that can be run on a user’s machine to visualize the metadata for search
and discovery. Together, these provide tools for the increasingly popular application of com-
putational methods to the study of visual culture (Wevers & Smits, 2019). The following
sections provide further explaination of the interfaces and visualization engine followed by a

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

1

https://doi.org/10.21105/joss.01800
https://github.com/openjournals/joss-reviews/issues/1800
https://github.com/distant-viewing/dvt
https://doi.org/10.5281/zenodo.3614034
http://arfon.org/
https://github.com/jgonggrijp
https://github.com/elektrobohemian
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01800


section on the process and development of the package. Detailed documentation and tutorials
are provided in the package’s documentation: https://distant-viewing.github.io/dvt/.

Figure 1: Schematic of the Distant Viewing Toolkit’s internal architecture. Algorithms are split into
two types: annotators that have access to small chunks of the raw inputs and aggregators that have
access to all of the extracted annotations but not the input data itself.

Low-level Python API

The full functionality of the Distant Viewing Toolkit is available when using the full Python
API. The toolkit starts by constructing a DataExtraction object that is associated with
input data (either a video file or a collection of still images). Algorithms are then applied to
the extraction object, with results stored as Pandas DataFrames that can be exported as CSV
or JSON files. There are two distinct types of algorithms:

• annotators: algorithms that work directly with the source data but are able to only
work with a small subset of frames or still images

• aggregators: algorithms that have access to information extracted from all previously
run annotators and aggregators across across the entire input, but cannot directly access
the visual data

The separation of algorithms into these two parts enables the writing of straightforward,
error-free code and closely mirrors the theory of Distant Viewing (Arnold & Tilton, 2019):

Distant viewing is distinguished from other approaches by making explicit the
interpretive nature of extracting semantic metadata from images. In other words,
one must ‘view’ visual materials before studying them. Viewing, which we define
as an interpretive action taken by either a person or a model, is necessitated
by the way in which information is transferred in visual materials. Therefore,
in order to view images computationally, a representation of elements contained
within the visual material—a code system in semiotics or, similarly, a metadata
schema in informatics—must be constructed. Algorithms capable of automatically
converting raw images into the established representation are then needed to apply
the approach at scale.

The annotator algorithms conduct the process of “viewing” the material whereas the aggre-
gator algorithms perform a “distant” (e.g., separated from the raw materials) analysis of the
visual inputs. The schematic in Figure 1 shows the relationship between these algorithms and
the respective input and output formats.

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

2

https://distant-viewing.github.io/dvt/
https://doi.org/10.21105/joss.01800


There are many annotators and aggregators currently available in the toolkit. Pipelines—pre-
bundled sequences of annotators and aggregators—are also included in the package. Details
of these implementations can be found in the API documentation. Users can also construct
custom Annotator and Aggregator objects, as described in the documentation’s tutorial.

Figure 2: Example video page from the Distant Viewing Toolkit’s command line video visualization
applied to a short test clip. Users can click on the pull-down menus to select a video file and choose
desired annotation type. Forward and backward buttons as well as a slider allow for scrolling through
the frames within a particular video file. Hovering over an image displays the extracted metadata for
each frame.

Figure 3: Example of the overlay shown when clicking on an individual frame. Users can use the
navigation buttons on the right to close the overlay or choose to scroll through adjacent frames.

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

3

https://doi.org/10.21105/joss.01800


High-level Command Line Interface

The command line tools provide a fast way to get started with the toolkit. Designed for
users with no experience programming and minimal knowledge of machine learning, it is ideal
for quickly getting meaningful results. Users call the command line by directly executing the
Python module (e.g., “python -m dvt”), specifying the desired pipeline, and pointing to a
video file or directory of images. The output data can be visualized using a local webserver.
Figures 2 and 3 show an example of the video visualization using a short video clip. While the
command line interface is meant to be easy to run out-of-the-box, it also affords a high-level of
customization through command line options. These are documented within the toolkit using
the argparse package. It is also possible to modify the visualization using custom CSS and
JavaScript code. This makes the command-line interface particularly well-suited for classroom
use, following the task-driven paradigm popular in Digital Humanities pedagogy (Birnbaum
& Langmead, 2017).

Process and Development

Development of the Distant Viewing Toolkit follows best-practices for open-source software
development (Wilson et al., 2014). Development of the software is done publicly through
our GitHub repository, which has both a stable master branch and experimental development
branch. The project includes an open-source license (GPL-2), uses the Contributor Covenant
Code of Conduct (v1.4), and provides user templates for submitting issues and pull requests
(Tourani, Adams, & Serebrenik, 2017). We make use of integrated unit testing through the
pytest package and TravisCI. The code passes checks for conforming to the common Python
coding styles (checked with pycodestyle) and the relatively aggressive checks provided by
pylint (Reitz & Schlusser, 2016). JavaScript coding style was verified with the static checkers
JSHint and JSLint (Santos, Valente, & Figueiredo, 2015). Stable versions of the package
are posted to PyPI as both source packages and pre-compiled wheels to make installation as
straightforward as possible.
Because our audiences have different levels of comfort with computational approaches, we
have streamlined the installation process. The package can be installed using a fresh version
of Anaconda Python and packages available through the pip command on PyPI (both of which
can be installed through GUIs if preferred). We have kept dependencies to a minimum, and
have avoided software that is known to be difficult to install. For example, all of the included
deep-learning algorithms are built using Tensorflow to avoid requiring multiple deep-learning
libraries (Abadi et al., 2016). While Tensorflow can occasionally throw errors, we have found
the CPU-version to be relatively error-free for non-technical users to install on both Windows
and macOS relative to popular alternatives such as Caffe and Torch.
As of version 0.2.0, the core architecture of the toolkit is stable. We plan to continue to
update the available algorithms available in the toolkit as well as make improvements to the
interactive, web-based interface. We also continue to utilize the toolkit for specific applications
with research partnerships. Our first published example application looks at Network-Era
Sitcoms in the United States and offers a model for the kind of analysis of visual culture made
possible by the Distant Viewing Toolkit (Arnold et al., 2019).

Acknowledgements

The Distant Viewing Toolkit is supported through a Digital Humanities Advancement Grant
from the National Endowment for the Humanities (HAA-261239-18).

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

4

https://doi.org/10.21105/joss.01800


References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016).
Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI 16) (pp. 265–283).

Arnold, T. B., & Tilton, L. (2019). Distant viewing: Analyzing large visual corpora. Digital
Scholarship in the Humanities. doi:10.1093/digitalsh/fqz013

Arnold, T. B., Tilton, L., & Berke, A. (2019). Visual style in two Network Era sitcoms.
Cultural Analytics. doi:10.22148/16.043

Birnbaum, D. J., & Langmead, A. (2017). Task-driven programming pedagogy in the digital
humanities. In New directions for computing education (pp. 63–85). Springer. doi:10.
1007/978-3-319-54226-3_5

Butler, J. G. (2012). Television: Critical methods and applications. Routledge.
Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018). VggFace2: A dataset

for recognising faces across pose and age. In 2018 13th IEEE international conference on
automatic face & gesture recognition (pp. 67–74). doi:10.1109/fg.2018.00020

Duhaime, D. (2019). PixPlot. https://github.com/YaleDHLab/pix-plot.
Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In Scan-

dinavian conference on image analysis (pp. 363–370). doi:10.1007/3-540-45103-x_50
Flueckiger, B., & Halter, G. (2018). Building a crowdsourcing platform for the analysis of

film colors. Moving Image: The Journal of the Association of Moving Image Archivists,
18(1), 80–83. doi:10.5749/movingimage.18.1.0080

Jiang, H., & Learned-Miller, E. (2017). Face detection with the faster r-cnn. In 2017 12th
IEEE international conference on automatic face & gesture recognition (pp. 650–657).
doi:10.1109/fg.2017.82

Karasek, J., Burget, R., Uher, V., Masek, J., & Dutta, M. K. (2015). Color image (dis)
similarity assessment and grouping based on dominant colors. In 2015 38th international
conference on telecommunications and signal processing (TSP) (pp. 756–759). doi:10.
1109/tsp.2015.7296366

Li, X., Zhao, H., & Zhang, L. (2018). Recurrent RetinaNet: A video object detection model
based on focal loss. In International conference on neural information processing (pp.
499–508). Springer. doi:10.1007/978-3-030-04212-7_44

Pal, G., Rudrapaul, D., Acharjee, S., Ray, R., Chakraborty, S., & Dey, N. (2015). Video shot
boundary detection: A review. In Emerging ICT for bridging the future-proceedings of the
49th annual convention of the computer society of India CSI volume 2 (pp. 119–127).
Springer.

Reitz, K., & Schlusser, T. (2016). The hitchhiker’s guide to python: Best practices for
development. O’Reilly Media, Inc.

Santos, A. L., Valente, M. T., & Figueiredo, E. (2015). Using javascript static checkers
on github systems: A first evaluation. In Proccedings of the 3rd workshop on software
visualization, evolution and maintenance (VEM) (pp. 33–40).

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 815–823). doi:10.1109/cvpr.2015.7298682

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet
and the impact of residual connections on learning. In Thirty-first aaai conference on
artificial intelligence.

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

5

https://doi.org/10.1093/digitalsh/fqz013
https://doi.org/10.22148/16.043
https://doi.org/10.1007/978-3-319-54226-3_5
https://doi.org/10.1007/978-3-319-54226-3_5
https://doi.org/10.1109/fg.2018.00020
https://github.com/YaleDHLab/pix-plot
https://doi.org/10.1007/3-540-45103-x_50
https://doi.org/10.5749/movingimage.18.1.0080
https://doi.org/10.1109/fg.2017.82
https://doi.org/10.1109/tsp.2015.7296366
https://doi.org/10.1109/tsp.2015.7296366
https://doi.org/10.1007/978-3-030-04212-7_44
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.21105/joss.01800


Tourani, P., Adams, B., & Serebrenik, A. (2017). Code of conduct in open source projects. In
2017 IEEE 24th international conference on software analysis, evolution and reengineering
(SANER) (pp. 24–33). doi:10.1109/saner.2017.7884606

Wevers, M., & Smits, T. (2019). The visual digital turn: Using neural networks to study
historical images. Digital Scholarship in the Humanities. doi:10.1093/llc/fqy085

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock,
S. H., et al. (2014). Best practices for scientific computing. PLoS biology, 12(1).

Arnold et al., (2020). Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture. Journal of Open Source Software, 5(45),
1800. https://doi.org/10.21105/joss.01800

6

https://doi.org/10.1109/saner.2017.7884606
https://doi.org/10.1093/llc/fqy085
https://doi.org/10.21105/joss.01800

	Summary
	Low-level Python API
	High-level Command Line Interface
	Process and Development
	Acknowledgements
	References

