
OwlDE: making ODEs first-class Owl citizens
Marcello Seri1 and Ta-Chu Kao2

1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of
Groningen 2 Computational and Biological Learning Lab, Department of Engineering, University of
Cambridge

DOI: 10.21105/joss.01812

Software
• Review
• Repository
• Archive

Editor: Matthew Sottile
Reviewers:

• @xoolive
• @rljacobson
• @mjsottile

Submitted: 04 October 2019
Published: 20 December 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

After only three years of intensive development and continuous optimisation, Owl has emerged
in the OCaml ecosystem as a versatile and powerful scientific programming library, competitive
with mainstream libraries such as SciPy and NumPy. What sets Owl apart is that it brings
under one umbrella the flexibility of a dynamical language and the power and safety of the
OCaml type system (Wang, 2017).
Today, Owl can be used to solve a wide range of scientific problems: it provides efficient
types for handling multidimensional arrays and linear algebra operations built on top of BLAS
and LAPACK; it supports machine learning applications with a powerful computational graph
engine and automatic differentiation pipeline. To improve efficiency, Owl allows offloading
computations to distributed systems and GPUs. With the recent addition of dataframes
and integration with Jupyter Notebooks provided by ocaml-jupyter, Owl has the chance to
become an excellent framework for exploratory mathematical analysis.
A notable omission in Owl’s ecosystem, when compared to similar solutions in python and
Julia, was a package for solving ordinary differential equations. To fill this need, we designed
OwlDE, a flexible and efficient ODE engine for Owl.

Design of the core module

The lack of automation around type classes and dynamic typing in OCaml may seem at first
a huge impediment to designing a flexible and ergonomic ODE integrator library. Indeed,
such a library should ideally allow the users to seamlessly use different algorithms that require
different kinds of inputs and options, and return varying kinds of outputs. Such constraints
on input/output types pose a major problem for the strong static type system of OCaml, even
if they are in principle implementable exploiting advanced language features, and were one of
the central issues in designing OwlDE.
We iterated various options and settled on the use of first-class modules. These have been
introduced in OCaml since version 3.12, and further improved in subsequent releases. With
first-class modules the user can parametrise functions over modules, allowing us to find a
middle ground between the verbosity of functorial code and the composability of OCaml
functions. The flexibility of this API allowed us to provide integration and bindings to external
frameworks like SUNDIALS or ODEPACK in a completely seamless way. Such an API allowed
us to compare native implementations with industry-grade solvers, both for mathematical
exploration, testing and benchmark purposes.
To give an idea of the interface, the following code allows to integrate the initial value problem

ẋ = f(x, t) = Ax, x(t0) = x0

Seri et al., (2019). OwlDE: making ODEs first-class Owl citizens. Journal of Open Source Software, 4(44), 1812. https://doi.org/10.21105/
joss.01812

1

https://doi.org/10.21105/joss.01812
https://github.com/openjournals/joss-reviews/issues/1812
https://github.com/owlbarn/owl_ode/
https://doi.org/10.5281/zenodo.3584264
http://noddle.io
https://github.com/xoolive
https://github.com/rljacobson
https://github.com/mjsottile
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01812
https://doi.org/10.21105/joss.01812

where A is the 2x2 matrix (1,−1; 2,−3), x0 = (−1; 1) and t0 = 0.

open Owl
open Owl_ode
open Owl_ode.Types

(* f(x,t) *)
let f x t =

let a = [|[|1.; -1.|];
[|2.; -3.|]|]

|> Mat.of_arrays in
Mat.(a *@ x)

(* temporal specification:
construct a record using the constructor T1 and
includes information of start time, duration,
and step size.*)

let tspec = T1 {t0 = 0.; duration = 2.; dt=1E-3}

(* initial state of the system *)
let x0 = Mat.of_array [|-1.; 1.|] 2 1

(* ts and xs will contain the integrated times and the values of the state
x at each of those times *)

let ts, xs = Ode.odeint Native.D.rk4 f x0 tspec ()

The tight integration with the OCaml and Owl ecosystem allows us also to benefit from some
of their strengths. The strong static type system made refactoring and code analysis an
immediate task, and greatly reduced the necessary test surface. The powerful functorised
ndarray subsystem exposed by Owl made the library trivially extensible also in somewhat
unexpected directions. Indeed, it is possible to take the integrators exposed by OwlDE and use
them to reproduce the work of (Chen, Rubanova, Bettencourt, & Duvenaud, 2018) without
the need to rewrite any of the core functions, as done in adjoint_ode. Similarly, it is
possible to extend the range of integrators and introduce new ones rather seamlessly, as done
in cviode, an implementation of the integrators introduced in (Vermeeren, Bravetti, & Seri,
2019).
One further strength of this library, comes from its native OCaml component, which can be
compiled to JavaScript and used for interactive simulations in the browser, as demoed during
the OCaml Workshop at ICFP 2019 in Berlin. The demo and the usage instructions are freely
available at owlde-demo-icfp2019.

Conclusion

When it comes to scientific programming, fast prototyping and ease of use have long been
considered the province of dynamically-typed languages like python. However, our experience
developing Owl and OwlDE, and the feedback from users who primarily use these tools for
research, suggests otherwise. In fact, the OCaml type system often ensures correctness and
speeds up computations without increasing verbosity, or hindering usability and readability. In
many cases, we discovered that porting python code to OCaml code via Owl was nearly trivial
and the resulting OCaml code was often comparable in length, but with the added benefits of
fewer runtime errors and improved performance. We look forward to developing OwlDE and
Owl further with inputs from the OCaml community.

Seri et al., (2019). OwlDE: making ODEs first-class Owl citizens. Journal of Open Source Software, 4(44), 1812. https://doi.org/10.21105/
joss.01812

2

https://github.com/tachukao/adjoint_ode
https://github.com/mseri/ocaml-cviode
https://github.com/mseri/owlde-demo-icfp2019
https://doi.org/10.21105/joss.01812
https://doi.org/10.21105/joss.01812

Acknowledgements

The authors would like to thank Liang Wang, Guillaume Hennequin, the Cambridge OCaml
Labs and all the contributors to Owl and Owl_ode for their support and help throughout the
development of the project.

References

Chen, T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neu-
ral ordinary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing systems 31 (pp. 6571–6583). Curran Associates, Inc. Retrieved from
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
Vermeeren, M., Bravetti, A., & Seri, M. (2019). Contact variational integrators. Journal of
Physics A: Mathematical and Theoretical. doi:10.1088/1751-8121/ab4767
Wang, L. (2017). Owl: A general-purpose numerical library in ocaml. Retrieved from https:
//arxiv.org/abs/1707.09616

Seri et al., (2019). OwlDE: making ODEs first-class Owl citizens. Journal of Open Source Software, 4(44), 1812. https://doi.org/10.21105/
joss.01812

3

http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
https://doi.org/10.1088/1751-8121/ab4767
https://arxiv.org/abs/1707.09616
https://arxiv.org/abs/1707.09616
https://doi.org/10.21105/joss.01812
https://doi.org/10.21105/joss.01812

	Summary
	Design of the core module
	Conclusion

	Acknowledgements
	References

