
MDL Suite: A language, generator and compiler for
describing mazes
Akash Nag1

1 Dept. of Computer Science, M.U.C. Women’s College
DOI: 10.21105/joss.01815

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @rreinecke
• @gradvohl

Submitted: 11 October 2019
Published: 17 February 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Background

Mazes have fascinated people since ancient times, and extensive research has been undertaken
to develop cutting-edge maze-solving algorithms that are faster or use lesser resources. The
popular micromouse competitions since the late 1970s (Micromouse Online, 2010) have pro-
vided much of the push behind such research. With each year, the competition is fiercer as
new cutting-edge maze solving algorithms are invented.

Statement of Need

A typical problem in describing a new maze-solving algorithm in a journal article is to actually
generate the maze image. Although random maze generators are widely available, often a
paper needs to describe a new algorithm that optimizes certain types of paths and loops in
a maze. In such cases, we need to have precise control over how the maze looks. Moreover,
the paths taken by a robot (or solver) also need to be marked out (e.g., see (Gupta & Sehgal,
2014)). To generate such images, the researcher needs to either painstakingly draw them or
write a program to do so, both of which are time-consuming and tedious. Even if such images
could be generated for journal articles, they can not be shared among researchers so that
they may try their own solvers on them, because these images cannot be readily converted
into program-readable mazes. To solve the aforesaid problems, we have developed a markup
language called Maze Description Language (MDL), which is human-readable yet terse.

State of the field

Existing maze generators can be categorized into four classes:

1. Those which generate mazes as text (e.g. as 0s and 1s, see (maze-generator Project,
2018)).

2. Those which generate random mazes as images/PDF but have no solution paths marked
out (“Maze generator,” 2019).

3. Those which generate maze images/document-format and have solution paths marked
out (Guo, 2011).

4. Those which generate maze images/3D-models and can have partial paths marked out
(Ayaz, Allen, Platek, & Onaral, 2008).

Nag, (2020). MDL Suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. https:
//doi.org/10.21105/joss.01815

1

https://doi.org/10.21105/joss.01815
https://github.com/openjournals/joss-reviews/issues/1815
https://github.com/akashnag/MDL-Suite
https://doi.org/10.5281/zenodo.3666101
https://vknight.org
https://github.com/rreinecke
https://github.com/gradvohl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01815
https://doi.org/10.21105/joss.01815


The generators in the first category are only suitable as inputs to some maze-solving algorithms
and can not be displayed/published in a paper. The second category generators generate only
the mazes and no paths can be marked out, making them unsuitable for researchers trying to
describe the maze-solving process undertaken by their own proposed algorithms in a step-by-
step fashion. The third category generators can only mark out solution paths, but researchers
often need to display how some algorithm can take detours, be stuck in dead-ends, etc.
The final class of generators, where our proposed tool falls, is suitable for research purposes.
However, the ones in this class that do exist currently (such as (Ayaz et al., 2008)) are
not open-source. Moreover, the paths they depict in MazeViewer (part of MazeSuite) come
from log-files generated by researchers. Therefore, the path-traversal data comes purely from
physical experiments (with fine resolution) and are not suitable for simply depicting path-
traversal by an algorithm. Although such path-data (as expected by MazeViewer) can be
generated programmtically, it would require more work on the part of the researcher.

Summary

With MDL-Suite, mazes can be easily described with minimal code, and visited paths can be
marked out. Multiply visited paths can also be marked using separate colors. The mazes are
fully customizable and a path-based description allows manual maze design very easily. The
MDL suite contains two programs: a MDL compiler and a MDL generator.
The MDL generator is a random maze generator that, given the maze specifications, gener-
ates a random maze in MDL format.
The MDL compiler compiles code written in MDL, either manually written or generated
using the MDL generator, into one of many output formats. The mazes can be compiled into
images (jpg, png, tiff, bmp) or they can directly be converted into code for 2D arrays (int,
boolean, char) for quick prototyping in Python or Java.
The MDL suite is a command-line utility written in Java and hence, requires a JVM to be
installed in order to use it.

Key Features

1. The maze design is fully customizable with a number of options for setting colors, grids,
coordinates, and cell-sizes.

2. Paths can be described minimally with a number of shorthands available, useful for
manual maze design. Alternately, mazes can also be described row-wise, useful for
algorithmically generated mazes.

3. Both generation and compilation commands require no complicated options or argu-
ments except the input files and are therefore, very easy to use. Furthermore, both
tools support multiple maze generation/compilation with a single command.

4. The MDL-format files are small text files and hence can be easily shared among re-
searchers for collaboration. They can also be edited and/or converted to Java/Python
code, or images using only a text-editor.

5. Research articles often require resizing images for better fit/placement and adjusting
maze sizes (and hence image resolution) is quick and easy.

6. Multiple paths can be marked out in separate colors, and even sprites (images) can be
used for marking those paths or the current position of the solver.

Nag, (2020). MDL Suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. https:
//doi.org/10.21105/joss.01815

2

https://doi.org/10.21105/joss.01815
https://doi.org/10.21105/joss.01815


Examples

Below we see a manually generated maze with only 12 lines of MDL code (and compiled with
the MDL compiler into png):

Figure 1: Figure-1

The figure shows 2 separate paths taken by the solver (shown in blue and green) as well as
the current position of the solver (shown in red). The paths and markers shown above are
very useful in papers describing the progress of a maze-solver during its course of exploring
the maze. Below we see a typical random 20x20 maze generated with the MDL generator
(and then compiled using the compiler):

Nag, (2020). MDL Suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. https:
//doi.org/10.21105/joss.01815

3

https://doi.org/10.21105/joss.01815
https://doi.org/10.21105/joss.01815


Figure 2: Figure-2

Future Scope

The MDL suite is open source and can be easily extended to develop a GUI application that
provides live preview. That will make the maze design process extremely smooth and fast.

Acknowledgements

We acknowledge Susmita Guha for her contributions to this project.

References

Ayaz, H., Allen, S. L., Platek, S. M., & Onaral, B. (2008). Maze suite 1.0: A complete set
of tools to prepare, present, and analyze navigational and spatial cognitive neuroscience
experiments. Behavior Research Methods, 40(1), 353–359. doi:10.3758/BRM.40.1.353

Nag, (2020). MDL Suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. https:
//doi.org/10.21105/joss.01815

4

https://doi.org/10.3758/BRM.40.1.353
https://doi.org/10.21105/joss.01815
https://doi.org/10.21105/joss.01815


Guo, C. (2011). Maze Generator and Solver - Wolfram Demonstrations Project. Retrieved
from https://demonstrations.wolfram.com/MazeGeneratorAndSolver/

Gupta, B., & Sehgal, S. (2014). Survey on techniques used in autonomous maze solving
robot. In 2014 5th International Conference-Confluence The Next Generation Information
Technology Summit (Confluence) (pp. 323–328). IEEE. doi:10.1109/CONFLUENCE.
2014.6949354

Maze generator. (2019). Retrieved from http://www.mazegenerator.net/
maze-generator Project. (2018). maze-generator. Retrieved from https://github.com/

oppenheimj/maze-generator/
Micromouse Online. (2010). History. Retrieved from http://www.micromouseonline.com/

micromouse-book/history/

Nag, (2020). MDL Suite: A language, generator and compiler for describing mazes. Journal of Open Source Software, 5(46), 1815. https:
//doi.org/10.21105/joss.01815

5

https://demonstrations.wolfram.com/MazeGeneratorAndSolver/
https://doi.org/10.1109/CONFLUENCE.2014.6949354
https://doi.org/10.1109/CONFLUENCE.2014.6949354
http://www.mazegenerator.net/
https://github.com/oppenheimj/maze-generator/
https://github.com/oppenheimj/maze-generator/
http://www.micromouseonline.com/micromouse-book/history/
http://www.micromouseonline.com/micromouse-book/history/
https://doi.org/10.21105/joss.01815
https://doi.org/10.21105/joss.01815

	Background
	Statement of Need
	State of the field
	Summary
	Key Features
	Examples
	Future Scope
	Acknowledgements
	References

