
GAIM: A C++ library for Genetic Algorithms and Island
Models
Georgios Detorakis1, 2 and Andrew Burton1, 2

1 Department of Cognitive Sciences, University of California Irvine, Irvine, USA. 2 All authors
contributed equally to this work.DOI: 10.21105/joss.01839

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @sjvrijn
• @sarats

Submitted: 15 October 2019
Published: 02 December 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The need for optimization is almost everywhere today, especially with the rise of deep learn-
ing approaches to AI that require searching through millions of neural network weights and
at least dozens of architectural hyperparameters. Optimization problems consist of finding
a maximum or minimum value of a objective function (in most practical cases, subject to a
set of constraints). Depending on the inherent complexity and characteristics of the function
to be optimized, there is a diverse armamentarium of ways to attack optimization problems.
Methods including Linear and Nonlinear programming, Dynamic programming, Calculus of
Variations, and Optimal Control have long been successfully used on smaller, traditional prob-
lems and can in some cases be completely dominant in a given area of application.
However, to realize most successful industrial-scale neural networks, various flavors of gra-
dient descent, in conjunction with the backpropagation algorithm and a substantial litera-
ture of hard-won tricks for improving training results, have been most meaningfully brought
to bear. Evolutionary Computing (EC) is one alternative family of stochastic, biologically-
inspired methods that avoids computing gradient information to solve optimization problems,
instead imagining solutions as individual genomes competing for life in populations subject to
a selection pressure imposed by the objective, or fitness function (A. E. Eiben & Smith, 2003;
De Jong, 2006). The advantage of these methods is that the choice of fitness function is
unconstrained, enabling ad-hoc sources of fitness information like aesthetic judgments, noisy
performance metrics, and undifferentiable processes to guide evolution of all sorts of parametric
products: artwork, electrical components, LISP programs, and neural controllers for playing
video games. However, the proper role of EC in deep learning (i.e., deep neuroevolution,
(Stanley, Clune, Lehman, & Miikkulainen, 2019)) remains a hotly contested issue: for what
kinds of problems can evolutionary processes be fast enough in comparison to gradient meth-
ods for training model weights directly? Is EC only practically suitable for automatic tuning
of high-level hyperparameters, or, failing even that, exploring subjectively-defined trajectories
in high-dimensional latent spaces after useful representations (e.g., word embeddings) have
already been learned by gradient methods?
Genetic Algorithms (GAs) embody a specific instantiation of EC that tend to be character-
ized by discrete generations with nearly-complete selection and replacement of the population
each generation, with the genomes being vectors of bits, integers, or real values, and the
most commonly used selection operation being fitness-proportionate. As in most EC, a GA
manages a population of individuals where each individual is represented by their genome and
a fitness value. The fitness value is computed at each generation for each of the individuals
and the end-goal is to maximize fitness (De Jong, 2006) by selecting high-fitness parents,
creating their offspring by sexually reproductive operations such as mutation and crossover,
and reconstituting the population. In comparison to other EC techniques, GAs can sometimes
more readily regress, drifting away from their maximum realized fitness towards greater sub-
optimality. In some cases this is problematic, but in others, particularly for high-dimensional

Detorakis et al., (2019). GAIM: A C++ library for Genetic Algorithms and Island Models. Journal of Open Source Software, 4(44), 1839.
https://doi.org/10.21105/joss.01839

1

https://doi.org/10.21105/joss.01839
https://github.com/openjournals/joss-reviews/issues/1839
https://gitlab.com/gdetor/genetic_alg
https://doi.org/10.5281/zenodo.3558829
https://orcid.org/0000-0001-5215-101X
https://github.com/sjvrijn
https://github.com/sarats
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01839


and complex fitness landscapes, this tolerance for suffering fitness losses facilitates the ex-
ploration needed to reach practically satisfactory solutions in the long-term. This tension
between fostering solution diversity and the need to protect good (or genotypically or phe-
notypically novel) solutions leads to the biologically-inspired inbreeding-mitigation strategy
of the Island Model (IM). An IM is a collection of islands (or subpopulations), each sepa-
rately carrying out a GA. The islands provide diversity advantages to the global population
by beginning with different initializations and only allowing a controlled amount of migration
between populations so that the best solutions do not very rapidly crowd out all competitors.
Lineages that are not currently the global best can survive for a while within subpopulations
despite a population-wide fitness disadvantage, buying valuable exploration time, and perhaps
allowing more fruitful hybrids when mature populations interbreed. The islands choose and
transfer some of their individuals to other islands on a specified migration interval, according
to a specified migration rule, and sometimes constrained to a specified communications or
reproductive-access structure. For example, islands may only be allowed to interact with their
close neighbors, based on some incompletely-connected topology such as a ring, a star, or a
lattice (Cohoon, Hegde, Martin, & Richards, 1987).
In this work, we introduce a C++ library implementing GA operations and Island Models. We
call the library GAIM, which simply stands for Genetic Algorithms and Island Models. It sup-
ports real-valued/floating-point genomes, rather than the more traditional binary genome, and
many of the most widely-used selection, mutation, and crossover operators. More precisely,
it implements the following selection operators, (i) roulette-wheel, (ii) rank, (iii) random, (iv)
tournament; crossover operators, (i) one-point, (ii) two-points, (iii) uniform, (iv) flat, (v) dis-
crete, and (vi) order-one; and mutation operators, (i) random, (ii) uniform and non-uniform,
(iii) fusion, and (iv) swap. The core design principle of GAIM is to allow the user to extend
this suite of operators with their own custom operators and to allow them to point arbitrarily
to an external fitness function (that receives a vector of floating point parameters and returns
a single fitness value) of their choice. GAIM’s goal is to provide a module to help users quickly
integrate fast GAs in their applications, rather than attempting to comprehensively implement
the numerous variants of GAs proposed in the literature. Complex frameworks that chroni-
cle these developments and are mostly implemented in interpreted languages tend to impose
overhead that is potentially unacceptable when fitness evaluations are very fast and very nu-
merous. With GAIM, the user has the ability to execute independent GA runs on different
threads, which is very useful for deriving good Monte Carlo estimates of average fitness across
independent evolutionary trajectories. Because parallelization of island models is even more
inconvenient than a simple GA for an nonspecialist application writer or researcher to add
directly to their program, a basic IM implementation is provided. Islands are implemented as
threads and concurrency mechanisms are used to synchronize the communication of individual
genomes between them only when it is necessary (based on the migration interval). Further-
more, we provide MPI implementations for independent GA runs and for Island Models. Both
can be used in case of large-scale optimization problems running on computer clusters or grids.
Finally, because experimentation overwhelmingly revolves around tuning evolution for a fit-
ness function of interest, evolutionary parameters are specified separately (in a file) from the
function to be optimized (in users’ source code), helping the research-oriented user to keep
track of numerous experiments and their results. GAIM provides tools for logging and storing
information regarding an experiment such as fitness of individuals, the best genome within a
population, etc. Furthermore, Python code is provided for plotting and analyzing results.
A small test suite accompanies the project so that GAIM’s smooth and robust operation can be
easily verified; furthermore, the project benefits from taking advantage of the CI infrastucture
provided by GitLab. More details about the implementation and the API available to the user
who wishes to integrate GAIM into their program are available in documentation. We also
furnish short tutorials and examples showing how to make use of GAIM either as a standalone
executable or as a shared library.

Detorakis et al., (2019). GAIM: A C++ library for Genetic Algorithms and Island Models. Journal of Open Source Software, 4(44), 1839.
https://doi.org/10.21105/joss.01839

2

https://doi.org/10.21105/joss.01839


Figure 1: A Time for the optimizer to reach the global minimum of the Schwefel function (http:
//benchmarkfcns.xyz/benchmarkfcns/schwefelfcn.html) is plotted against the dimensionality of the
function (size of genome). Separate series show that convergence is faster in terms of real time for
GAIM versus a Python implementation and ECJ. Single population of 20 individuals running for 10000
generations for each case of different genome size. B Performance of 2, 4, 8, and 12 independent GAs
(no communication between threads/processes) running for 10000 generations with 100 individuals
of 100 genes each. POSIX threads (black) and MPI processes (blue) lines indicate that POSIX
implementation is faster. Both cases scale linear with the number of threads. C Performance of
Island Model for 2, 4, 8, and 12 islands. The IM runs for 10000 generations with 100 individuals of
100 genes each. D Comparison of POSIX threads and MPI processes running for 10000 generations
and with varying number of individuals (10, 50, 100). The genome size is 100 in all cases. Each
island communicates with all the others since we employ a all-to-all topology (worst case scenario).
In all cases the fitness function is the Schwefel test function.

References

A. E. Eiben, & Smith, J. E. (2003). Introduction to evolutionary computing. Springer.
Retrieved from https://books.google.com/books?id=7IOE5VIpFpwC
Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: A
parallel genetic algorithm. In Proceedings of the Second International Conference on Genetic
Algorithms on Genetic Algorithms and Their Application (pp. 148–154). Hillsdale, NJ, USA:
L. Erlbaum Associates Inc. Retrieved from http://dl.acm.org/citation.cfm?id=42512.42532
De Jong, K. A. (2006). Evolutionary computation: A unified approach. MIT Press. Retrieved
from https://books.google.com/books?id=1Yn6AQAAQBAJ
Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing neural net-
works through neuroevolution. Nature Machine Intelligence, 1(1), 24–35. doi:10.1038/
s42256-018-0006-z

Detorakis et al., (2019). GAIM: A C++ library for Genetic Algorithms and Island Models. Journal of Open Source Software, 4(44), 1839.
https://doi.org/10.21105/joss.01839

3

http://benchmarkfcns.xyz/benchmarkfcns/schwefelfcn.html
http://benchmarkfcns.xyz/benchmarkfcns/schwefelfcn.html
https://books.google.com/books?id=7IOE5VIpFpwC
http://dl.acm.org/citation.cfm?id=42512.42532
https://books.google.com/books?id=1Yn6AQAAQBAJ
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.21105/joss.01839

	Summary
	References

