
JCOL: A Java package for solving the graph coloring
problem
Shalin Shah1

1 Johns Hopkins University
DOI: 10.21105/joss.01843

Software
• Review
• Repository
• Archive

Editor: Jed Brown
Reviewers:

• @HaoZeke
• @ProbShin

Submitted: 12 September 2019
Published: 03 April 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The graph coloring problem aims at assigning colors to the nodes of a graph such that no
two connected nodes have the same color. The graph coloring problem is NP-complete and
one of the harder problems to solve. Here we present a heuristic to solve this problem using
three cascaded algorithms. The graph coloring problem was one of Karp’s 21 NP-complete
problems, and is also know as the problem of finding the chromatic number of a graph. Several
other problems reduce to graph coloring including solving generalized Sudoku puzzles.

Figure 1: Three Coloring.

The problem of graph coloring can be solved using exact approaches like branch and cut and
using heuristics like this work. Exact algorithms are not suitable for very large instances with
more than 500 vertices. Malaguti & Toth (2010) surveys some of the algorithms that are
exact and heuristic and find that the % gap for exact algorithms, even when allowed to run for
7200 seconds is quite large. This algorithm is able to solve several large instances, and finds
the optimum chromatic number or at least a very close to optimum solution in a short amount
of computational duration. When an exact algorithm is available and suitable, it is of course
the preferred way as the solution can be provably optimal. But for very large graphs, this is
often unsuitable because of the exponential complexity of NP-hard problems. Our heuristic
can help in these cases. Results of our algorithm can be found on the software page.

Shah, S., (2020). JCOL: A Java package for solving the graph coloring problem. Journal of Open Source Software, 5(48), 1843. https:
//doi.org/10.21105/joss.01843

1

https://doi.org/10.21105/joss.01843
https://github.com/openjournals/joss-reviews/issues/1843
https://github.com/shah314/graphcoloring
https://doi.org/10.5281/zenodo.3709625
https://jedbrown.org
https://github.com/HaoZeke
https://github.com/ProbShin
http://creativecommons.org/licenses/by/4.0/
https://github.com/shah314/graphcoloring
https://doi.org/10.21105/joss.01843
https://doi.org/10.21105/joss.01843


The ColPack solver (Gebremedhin, Nguyen, Patwary, & Pothen, 2010) was run on some of
the benchmark instances and the results are presented in the software README and in the
table below. To summarize, this method is as good or better on all the randomly chosen
instances. On the queen9_9 and le450_5d instances, this method out-performs ColPack.
Also, this method is randomized and iterative so it can be left running for a few hours to
see if the coloring improves further (for large graphs with unknown chromatic numbers). The
following table shows the results of the coloring. The run time for JCOL for 100 iterations is
shown in the last column (milliseconds). This could be improved by decreasing the number
of iterations and by disabling local search.

DataSet LARGEST
FIRST

SMALLEST
LAST

INCIDENCE
DEGREE

This
Algorithm

ColPack(ms) JCOL(ms)

— — — — — — —
fpsol2.i.3 30 30 30 30 32 430
inithx.i.3 31 31 32 31 36 457
le450_5d 14 12 14 7 33 361
mulsol.i.5 31 31 31 31 38 342
zeroin.i.3 30 30 30 30 30 332
games120 9 9 9 9 30 229
miles750 32 31 32 31 31 276
queen9_9 15 15 15 11 30 218
myciel7 8 8 9 8 30 569
— — — — — — —
GM* 19.55 19.15 19.88 17.43

*GM=Geometric Mean
This software uses the DSATUR (Brélaz, 1979) heuristics along with iterated greedy heuristics
(Culberson, 1992) to color a graph. The DSATUR heuristic orders the nodes of a graph in
non-increasing order of the degree of saturation. The degree of saturation is the number of
colors found in the adjacency list of a node. The iterated greedy heuristics perform randomized
ordering of the vertices to color them in that order. By randomizing this process, improvement
can be found in successive iterations. The algorithm then uses min-conflicts local search to
improve the coloring. The method is quite successful in finding good colorings of the majority
of the publicly available data sets. Results can be found on the software repository page.
The method uses the following steps:

1) Compute a clique (maximum is good)
2) Color the clique
3) Sort the rest of the vertices in non-increasing order of the degree of saturation
4) Color the vertices in the order given by 3. Also, when a vertex is colored, change the

degree of saturation of the neighboring vertices so that the order of coloring changes
5) Improve the coloring using Iterated Greedy techniques
6) Improve the coloring using min-conflicts local search
7) Report the coloring

The problem instances are available here: https://mat.tepper.cmu.edu/COLOR/instances.
html and http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

References

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the
ACM, 22(4), 251–256. doi:10.1145/359094.359101

Shah, S., (2020). JCOL: A Java package for solving the graph coloring problem. Journal of Open Source Software, 5(48), 1843. https:
//doi.org/10.21105/joss.01843

2

https://github.com/shah314/graphcoloring/blob/master/README.md
https://github.com/shah314/graphcoloring
https://mat.tepper.cmu.edu/COLOR/instances.html
https://mat.tepper.cmu.edu/COLOR/instances.html
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
https://doi.org/10.1145/359094.359101
https://doi.org/10.21105/joss.01843
https://doi.org/10.21105/joss.01843


Culberson, J. (1992). Iterated greedy graph coloring and the difficulty landscape. doi:10.
7939/R3M32NH6Q

Gebremedhin, A., Nguyen, D., Patwary, M., & Pothen, A. (2010). ColPack: Software for
graph coloring and related problems in scientific computing. Submitted to ACM TOMS.
doi:10.1145/2513109.2513110

Malaguti, E., & Toth, P. (2010). A survey on vertex coloring problems. International trans-
actions in operational research, 17(1), 1–34. doi:10.1111/j.1475-3995.2009.00696.x

Shah, S., (2020). JCOL: A Java package for solving the graph coloring problem. Journal of Open Source Software, 5(48), 1843. https:
//doi.org/10.21105/joss.01843

3

https://doi.org/10.7939/R3M32NH6Q
https://doi.org/10.7939/R3M32NH6Q
https://doi.org/10.1145/2513109.2513110
https://doi.org/10.1111/j.1475-3995.2009.00696.x
https://doi.org/10.21105/joss.01843
https://doi.org/10.21105/joss.01843

	Summary
	References

