
MyQueue: Task and workflow scheduling system
Jens Jørgen Mortensen1, Morten Gjerding1, and Kristian Sommer
Thygesen1

1 CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
DOI: 10.21105/joss.01844

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @gonsie
• @marksantcroos

Submitted: 29 October 2019
Published: 14 January 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Task scheduling and workload management on high-performance computing environments
is usually done with tools such as SLURM (Jette, Yoo, & Grondona, 2002). MyQueue is a
front-end for schedulers that makes handling of tasks easy. It has a command-line interface
called mq with a number of sub-commands and a Python interface for managing workflows.
Currently, the following schedulers are supported: SLURM, PBS, and LSF.
The idea behind MyQueue is to define a personal queue that the user can interact with in an
easy and efficient way while MyQueue handles the interaction with the scheduler. Finished
tasks will stay in the personal queue until they are explicitly removed so they can be listed
with their status (done, failed, timed-out, or out-of-memory). This makes it easy to keep
track of your tasks: If a task is listed as “done”, it reminds you that some action should be
taken, e.g., the result of the task should be checked. If a task failed then you need to fix
something and resubmit the task. In this sense, MyQueue works as a to-do list.
MyQueue has a convenient list sub-command. It will by default only show tasks belonging to
the current folder and its sub-folders, making it easy to manage several projects by putting
them in separate folders. Failed tasks will show a short error message read from the relevant
line in the error file. You can select the tasks you want to list by status, task-id, name, or
error message. A task can be marked with a restarts number N , indicating that MyQueue
should restart the task up to N times (with increased resources) if the task runs out of
time or memory. Increased resources means longer time or more cores for the timed-out and
out-of-memory cases, respectively.
The MyQueue submit sub-command makes it easy to submit thousands of tasks in a single
command. As input submit takes a shell script, Python script, or Python module and executes
the script/module in a number of folders. This makes it easy to submit a large number of
tasks quickly. The list sub-command can then be used to monitor the execution of the tasks.
Together with the resubmit sub-command it becomes easy to resubmit any tasks that might
have failed. This example show how the sub-commands of MyQueue synergize and increase
the efficiency of the user.
MyQueue has a simple Python interface that can be used to define workflows. A Python
script defines a dependency tree of tasks that MyQueue can use to submit tasks without user
involvement. The dependencies take the form “if task X is done then submit task Y”. MyQueue
works directly with folders and files, which makes it simple to use and easy to get started.
Compared to the current state of the field MyQueue distinguishes itself by focusing not on
automatic handling of crashes but only on the single problem of submitting and managing
thousands of tasks. In the scientific field of the authors, atomic-scale simulations, commonly
used workflow managers are AiiDA (Pizzi, Cepellotti, Sabatini, Marzari, & Kozinsky, 2016)
and Fireworks (Jain et al., 2015). Fireworks’ centralized server model is advantageous when
coordinating tasks distributed between multiple users. In constrast to Fireworks, MyQueue is

Mortensen et al., (2020). MyQueue: Task and workflow scheduling system. Journal of Open Source Software, 5(45), 1844. https://doi.org/
10.21105/joss.01844

1

https://doi.org/10.21105/joss.01844
https://github.com/openjournals/joss-reviews/issues/1844
https://gitlab.com/myqueue/myqueue
https://doi.org/10.5281/zenodo.3607221
http://danielskatz.org/
https://github.com/gonsie
https://github.com/marksantcroos
http://creativecommons.org/licenses/by/4.0/
https://myqueue.readthedocs.io/
https://en.m.wikipedia.org/wiki/Slurm_Workload_Manager
https://en.m.wikipedia.org/wiki/Portable_Batch_System
https://en.m.wikipedia.org/wiki/Platform_LSF
http://www.aiida.net
https://materialsproject.github.io/fireworks
https://doi.org/10.21105/joss.01844
https://doi.org/10.21105/joss.01844


installed per user, is completely decentralized, and cannot coordinate tasks between multiple
users. AiiDA is a fully automatic workflow tool designed to ensure data provenance. In
contrast to AiiDA, MyQueue does not handle data provenance and does not focus on the
automization of the workflow process. These design decisions can be seen both as a drawback
and an advantage depending on the use case, but in any case makes MyQueue easier to learn.
To summarize, MyQueue is a personal, decentralized, and lightweight front-end for schedulers
with support for submitting workflows. It requires no system administrator and no database
server.
MyQueue is useful for high-throughput computations, which require automatic submission
of thousands of interdependent jobs. For example, MyQueue has been used to drive high-
throughput screening studies coordinating on the order of 100,000 individual tasks (Haastrup
et al., 2018), (Bölle et al., 2019). MyQueue is also used by the Atomic Simulation Recipes
project, which is a library of tasks for atomic simulations.

Acknowledgments

K. S. T. acknowledges funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant Agreement No. 773122, LIMA).

References

Bölle, F. T., Mathiesen, N. R., Nielsen, A. J., Vegge, T., Lastra, J. M. G., & Castelli, I. E.
(2019). Autonomous Discovery of Materials for Intercalation Electrodes. doi:10.26434/
chemrxiv.9971054.v1

Haastrup, S., Strange, M., Pandey, M., Deilmann, T., Schmidt, P. S., Hinsche, N. F.,
Gjerding, M. N., et al. (2018). The computational 2D materials database: High-
throughput modeling and discovery of atomically thin crystals. 2D Materials, 5(4), 042002.
doi:10.1088/2053-1583/aacfc1

Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., et al.
(2015). FireWorks: A dynamic workflow system designed for high-throughput applications.
Concurrency and Computation: Practice and Experience, 27(17), 5037–5059. doi:10.
1002/cpe.3505

Jette, M. A., Yoo, A. B., & Grondona, M. (2002). SLURM: Simple linux utility for resource
management. In In lecture notes in computer science: Proceedings of job scheduling
strategies for parallel processing (JSSPP) 2003 (pp. 44–60). Springer-Verlag. doi:10.
1007/10968987_3

Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: Auto-
mated interactive infrastructure and database for computational science. Computational
Materials Science, 111, 218–230. doi:https://doi.org/10.1016/j.commatsci.2015.09.013

Mortensen et al., (2020). MyQueue: Task and workflow scheduling system. Journal of Open Source Software, 5(45), 1844. https://doi.org/
10.21105/joss.01844

2

https://asr.readthedocs.io/
https://doi.org/10.26434/chemrxiv.9971054.v1
https://doi.org/10.26434/chemrxiv.9971054.v1
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.21105/joss.01844
https://doi.org/10.21105/joss.01844

	Summary
	Acknowledgments
	References

