The Journal of Open Source Software

DOI: 10.21105/joss.01849

Software
= Review 7
= Repository &
= Archive &

Editor: Christopher R. Madan @@
Reviewers:

= @danasolav

= @sreschechtko

Submitted: 14 August 2019
Published: 07 January 2020

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

3D reconstruction toolbox for behavior tracked with
multiple cameras

Swathi Sheshadri'' 2, Benjamin Dann!, Timo Hueser!, and Hansjoerg
Scherberger! 2

1 German Primate Center, Goettingen, Germany 2 Department of Biology and Psychology,
University of Goettingen, Germany

Summary

Markerless tracking is a crucial experimental requirement for behavioral studies conducted
in many species in different environments. A recently developed toolbox called DeeplLabCut
(DLC) (Mathis et al. (2018)) leverages Artificial Neural Network (ANN) based computer
vision to make precise markerless tracking possible for scientific experiments. DLC uses a
deep convolutional neural network, ResNet (He, Zhang, Ren, & Sun (2016)) pre-trained on
ImageNet database (Deng et al. (2009)) and adapts it to make it applicable for behavioral
tracking tasks. To track complex behaviors such as grasping with object interaction in 3D,
experimental setups with multiple cameras are required. Such systems can largely benefit
from a robust and easy to use camera calibration and 3D reconstruction toolbox. The current
version of DLC allows 3D reconstruction of features tracked in 2D from pairs of cameras only
(Nath, Mathis, Chen, Bethge, & Mathis (2019)) and is not sufficient when behavior is tracked
with more than 2 cameras. Furthermore, for noisy 2D tracking conditions, such as low light
or low resolution, the accuracy of tracked 3D coordinates can be improved by evaluating data
from more than two cameras.

To facilitate 3D tracking of complex behaviors requiring multiple cameras (n>=2), we devel-
oped pose3d: a Matlab (The MathWorks Inc., Natick, Massachusetts) implementation for 3D
reconstruction. pose3d can be divided into two main parts: camera calibration with pairwise
estimation of relative camera positions to each other and 3D reconstruction with triangulation
performed over 2D feature coordinates tracked from all cameras. Camera calibration refers to
the estimation of intrinsic and extrinsic camera parameters including the level of magnification
captured by the focal length, the distortion in the camera image caused by the lens and the
location of camera in 3D coordinates. In stereo camera calibration, one of the cameras is
fixed as the primary camera and the position of the secondary camera with respect to the
primary camera is estimated and given as an additional parameter. Stereo camera calibration
in pose3d is performed by using checkerboard presented at varied angles to the pair of cameras
being calibrated to establish the correspondence between 2D image coordinates and 3D coor-
dinates. Following calibration, the 2D feature tracked across cameras is transformed into 3D
coordinates using triangulation. pose3d implements triangulation by minimizing the distance
of the estimated 3D feature coordinate from the lines passing through the focal center and
the feature tracked in 2D on the image plane of the cameras simultaneously.

pose3d usage and features

To use pose3d for stereo camera calibration and 3D reconstruction the users need only to edit a
configuration file to enter their experiment specific details. The configuration file is extensively

Sheshadri et al., (2020). 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software, 5(45), 1849. 1
https://doi.org/10.21105/joss.01849


https://doi.org/10.21105/joss.01849
https://github.com/openjournals/joss-reviews/issues/1849
https://github.com/SwathiSheshadri/pose3d
https://doi.org/10.5281/zenodo.3589990
http://www.cmadan.com
https://github.com/danasolav
https://github.com/sreschechtko
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01849

The Journal of Open Source Software

commented to help users through the process of editing it. Running the main function of the
repository ‘'main_pose3d.m’ with the user’s configuration file, automatically creates the folder
structure required for stereo camera calibration and 3D reconstruction. Then, pose3d launches
Matlab's stereoCameraCalibrator GUI sequentially for every pair of primary and secondary
cameras to estimate the parameters of the cameras in the user’s experimental setup. The
GUI first parses through checkerboard frames recorded simultaneously from the two cameras
being calibrated to select frames in which checkerboard can be detected in both cameras.
At this point, the user can select the number of distortion coefficients which determines the
degree of polynomial used to estimate distortion. If the lens used in the experiment causes
higher distortion of images, 3 distortion coefficients can be used instead of the 2 (default)
by simply selecting the radio-button on the GUI corresponding to it. After this, clicking
the calibrate button on the GUI, estimates camera parameters and relative positioning of
secondary camera with respect to the primary. The GUI also displays reprojection errors
across calibration frames allowing users to iteratively recalibrate after removing outliers (this
can be done by right-clicking on the data browser of the GUI and selecting the option remove
and recalibrate). After calibration is complete, the session can be saved (by clicking the save
as button). This procedure is then repeated for all camera pairs to be calibrated. pose3d
prompts users throughout this procedure, providing messages on the next steps to be carried
out.

After calibrating all cameras in the setup with respect to the primary camera, the 2D fea-
ture of interest tracked across cameras are corrected for distortion and the 3D coordinates
estimated by triangulation. The function for triangulation across ‘n’ cameras is called ‘trian-
gulate_ncams’. This function is available for users in three modes that can be selected based
on prior knowledge of the experimental setup. The first mode of triangulation is referred to
as ‘all’ and uses data from all ‘n" cameras that are used to track the feature in 2D. The
second mode is referred to as ‘avg’ and performs triangulation over all pairs of cameras in
the setup and provides the average over all pairs as the result. The third mode is referred to
as ‘best-pair’ and selects the best camera pair for every time point and feature of interest for
triangulation. While the first and second modes can be used for 3D reconstruction of features
tracked with any software, the third mode is applicable only when tracked 2D features are
associated with likelihood values, e.g., as provided by DLC.

Overall, pose3d offers a semi-automated 3D reconstruction workflow going beyond Matlab's
existing functions (details in section titled ‘Comparison of pose3d to existing Matlab functions’)
that takes users through the entire process of camera calibration, undistortion, triangulation,
and post processing steps such as filtering to reduce outliers. pose3d also allows users to try
different pre- and post-processing parameters and visualizes its effect on the accuracy of 3D
reconstruction to help perform manual parameter tuning before saving final results. Other
implementations of similar functionality as pose3d exist and use OpenCV ((“Open Source
Computer Vision Library,” 2015)) in python: anipose (Karashchuk (2019)). However, in
comparison to OpenCV based implementations, pose3d provides a user-friendly application by
integrating with a feature-rich graphical user interface (GUI) for stereo camera calibration in
Matlab. A more detailed comparison between pose3d and anipose is included in a subsequent
section ‘Comparison of pose3d and anipose. Furthermore, we provide two demo datasets
(see next paragraph) illustrating the capabilities of pose3d and a quick-view of the included
features. Given the popularity of Matlab in academia and its well documented and easy to use
core functions for camera calibration, we believe this toolbox will help make 3D reconstruction
of tracked 2D behavior easier to use.

Demo datasets and error measurement in 3D reconstruction

Demo datasets provided in pose3d were acquired by moving a Rubik's cube on a table along
different directions and by recording it simultaneously from a 5-camera tracking system. For

Sheshadri et al., (2020). 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software, 5(45), 1849. 2
https://doi.org/10.21105/joss.01849


https://doi.org/10.21105/joss.01849

The Journal of Open Source Software

the demos, we tracked the corners of the cube using DLC in the first example and manually
in the second example. Manual annotations are used to mimic the usage of pose3d for any
other 2D tracking software.

The key difference between the two examples is as follows. DLC, in addition to 2D tracking
provides users with a likelihood value for every tracked feature that informs the users on
how confident the network is about the inferred location of a particular feature of interest
at any given time point. pose3d makes use of this information by applying a threshold and
automatically selecting the cameras that cross this threshold for 3D reconstruction. From
the 2D tracked corners we use pose3d to track corners in 3D for 1000 example frames with
DLC and 20 example frames with manual annotations. Following this, we reconstruct the
edges of the cube and compare it to the standard edge length of a Rubik's cube (57 mm).
In the demo data using DLC based 2D annotations, we obtain on average an error of 1.39
mm in 3D reconstructed edge lengths computed over all 12 edges of the cube across 1000
example frames. For the demo data using manual annotations across 20 frames we obtain
an average error of 1.16 mm over all 12 edges computed over 20 manually annotated frames.
Furthermore, using ‘all’ mode of triangulation provided significantly better results in both of
our demo datasets than the other two modes of triangulation (comparison tests for the 3
modes of 3D reconstruction included in the demo functions for reference).

Comparison of pose3d and existing Matlab functions

pose3d is a 3D reconstruction workflow integrated closely with functions from Matlab's com-
puter vision toolbox. This workflow fixes one of the cameras in the experimental setup as
primary which is crucial to ensure that the data points are within the same coordinate sys-
tem across camera pairs. The stereo camera calibration part of our implementation can
be considered a wrapper around functions from Matlab's computer vision toolbox, however,
the triangulation function included with pose3d extends the existing triangulation function in
Matlab that operates only for 2 cameras.

Comparison of pose3d and anipose

Functionally, pose3d and anipose provide users with pre- and post-processing tools for 3D
reconstruction including the process of camera calibration. The main difference is that pose3d
provides a user-friendly GUI utility which is missing in anipose. With pose3d, by enter-
ing the experimental details in a configuration file and running a single Matlab function
(‘main_pose3d.m’), the user can perform the entire procedure of 3D reconstruction. Further-
more, the integration of pose3d with the stereoCameraCalibrator GUI in Matlab makes the
task of camera calibration very intuitive. This allows users to estimate camera and lens distor-
tion parameters, select outlier frames from calibration with the click of a button. On the other
hand, anipose uses OpenCV functions that can be quite difficult to use for non-experts. For
instance, with pose3d, due to its integration with Matlab’s stereoCameraCalibrator GUI, all
pairs of images used for camera calibration are visualized along with their reprojection errors,
which allows easy identification and removal of images with larger error values. With OpenCV
functions, users get warning/error messages that are often quite technical in nature and can
take longer for non-experts to perform root-cause analysis. In addition, pose3d provides demo
datasets including example calibration images along with code to run 3D reconstructions on
demo datasets as well as video tutorials to illustrate its operation. Lastly, error calculation
routine is included in pose3d to quantify deviation of the reconstructed data from ground truth
which is not provided in the current version of anipose. For example, in the demo dataset
using Rubik’s cube the 12 edges of the cubes were physically measured and compared against
the reconstructed edge lengths obtained after running pose3d. Similarly, fixed lengths in the

Sheshadri et al., (2020). 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software, 5(45), 1849. 3
https://doi.org/10.21105/joss.01849


https://doi.org/10.21105/joss.01849

The Journal of Open Source Software

user's experimental setups that are tracked can be compared against the measured values
using the error calculation routine of pose3d.

Some other minor similarities and differences between anipose and pose3d include the fol-
lowing. First, both anipose and pose3d allow users to have the same set of calibration files
across sessions or have a separate set per session. This can be decided by the user depending
on whether the user wants to have the same calibration files across sessions or not. This is
possible in pose3d by having the same experiment path (assigned to variable exp_path) and
changing only the experiment name (assigned to variable exp_name) in the configuration file
in case the same calibration files are used across sessions. With anipose this is implemented
by having a hierarchy for the selection of calibration videos placed in different folders. Second,
the triangulation approach used is the same in the two packages. However, with pose3d we
have included 3 modes of 3D reconstruction including ‘all’, ‘avg’, and ‘best-pair. Of these
three modes ‘all’ corresponds to the one implemented in anipose. With our demo dataset,
we have shown that the ‘all’ mode gives the lowest on average error and is therefore recom-
mended. Third, anipose allows for camera calibration using charuco boards, checker boards or
aruco boards of which it recommends the usage of charuco and checker boards. Since pose3d
integrates with the camera calibration GUI from MATLAB, only checker board is used for
calibration.

For further technical reading on details of triangulation for 3D reconstruction please refer to
our supporting document.

References

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale
hierarchical image database. In CVPR09. doi:10.1109/CVPR.2009.5206848

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
770-778). doi:10.1109/CVPR.2016.90

Karashchuk, P. (2019). Anipose. GitHub repository. https://github.com/lambdaloop/
anipose; GitHub. doi:10.5281/zenodo.3364758

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge,
M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts with deep
learning. Nature Neuroscience, 21, 1281-1289. doi:10.1038/s41593-018-0209-y

Nath, T., Mathis, A., Chen, A. C., Bethge, M., & Mathis, M. W. (2019). Using DeepLabCut
for 3D markerless pose estimation across species and behaviors. Nature Protocols. doi:10.
1038/541596-019-0176-0

Open Source Computer Vision Library. (2015). https://opencv.org.

Sheshadri et al., (2020). 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software, 5(45), 1849. 4
https://doi.org/10.21105/joss.01849


https://github.com/SwathiSheshadri/pose3d/blob/master/paper/Appendix.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2016.90
https://github.com/lambdaloop/anipose
https://github.com/lambdaloop/anipose
https://doi.org/10.5281/zenodo.3364758
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1038/s41596-019-0176-0
https://opencv.org
https://doi.org/10.21105/joss.01849

	Summary
	pose3d usage and features
	Demo datasets and error measurement in 3D reconstruction
	Comparison of pose3d and existing Matlab functions
	Comparison of pose3d and anipose
	References

