

univariateML: An R package for maximum likelihood estimation of univariate densities

Jonas Moss¹

 ${\bf 1}$ University of Oslo

DOI: 10.21105/joss.01863

Software

- Review C
- Repository 🖒
- Archive 🗗

Editor: Arfon Smith ♂ Reviewers:

- @MaaniBeigy
- @vbaliga

Submitted: 01 November 2019 Published: 04 December 2019

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC-BY).

Summary

univariateML is an R (R Core Team, 2019) package for user-friendly univariate maximum likelihood estimation (Cam, 1990). It supports more than 20 densities, the most popular generic functions such as plot, AIC, and confint, and a simple parametric bootstrap (Efron & Tibshirani, 1994) interface.

When looking at univariate data it is natural to ask if there is a known parametric density that fits the data well. The following example uses the egypt (Pearson, 1902) data set included in the package and a plot of the Weibull and Gamma densities (Johnson, Kotz, & Balakrishnan, 1995, Chapter 17 & 21).

install.packages("univariateML") library("univariateML") hist(egypt\$age, freq = FALSE, main = "Mortality", xlab = "Mortality") lines(mlweibull(egypt\$age)) # Plots a Weibull fit. lines(mlgamma(egypt\$age), col = "red") # Plots a Gamma fit.

A natural question to ask is which among several models fits the data best. This can be done using tools of model selection such as the AIC (Akaike, 1998).

```
AIC(mlweibull(egypt$age),
mlgamma(egypt$age))
```

df AIC ## mlweibull(egypt\$age) 2 1230.229 ## mlgamma(egypt\$age) 2 1234.772

Problems involving estimation of univariate densities are common in statistics. Estimation of univariate densities is used in for instance exploratory data analysis, in the estimation of copulas (Ko, Hjort, & Hobæk Haff, 2019), as parametric starts in density estimation (Hjort & Glad, 1995; Moss & Tveten, 2019), and is of interest in and of itself.

Analytic formulas for the maximum likelihood estimates are used whenever they exist. Most estimators without analytic solutions have a custom made Newton-Raphson solver. This is in contrast to the mle function in the built-in R package stats4, which supports more general maximum likelihood estimation through numerical optimization on a supplied negative log-likelihood function.

Rfast (Papadakis et al., 2019) is an R package with fast Newton-Raphson implementations of many univariate density estimators. univariateML differs from Rfast mainly in focus: While univariateMLis focused on user-friendly univariate density estimation, Rfast aims to have the fastest possible implementations of many kinds of functions.

References

Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In *Selected papers of hirotugu akaike* (pp. 199–213). Springer.

Cam, L. L. (1990). Maximum likelihood: An introduction. *International Statistical Review / Revue Internationale de Statistique*, *58*(2), 153–171. doi:10.2307/1403464

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Hjort, N. L., & Glad, I. K. (1995). Nonparametric density estimation with a parametric start. *The Annals of Statistics*, 882–904. doi:10.1214/aos/1176324627

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). *Continuous univariate distributions* (2nd ed., Vol. 1). Wiley.

Ko, V., Hjort, N. L., & Hobæk Haff, I. (2019). Focused information criteria for copulas. *Scandinavian Journal of Statistics*. doi:10.1111/sjos.12387

Moss, J., & Tveten, M. (2019). Kdensity: An r package for kernel density estimation with parametric starts and asymmetric kernels. *The Journal of Open Source Software*, *4*. doi:10. 21105/joss.01566

Papadakis, M., Tsagris, M., Dimitriadis, M., Fafalios, S., Tsamardinos, I., Fasiolo, M., Borboudakis, G., et al. (2019). *Rfast: A collection of efficient and extremely fast r functions*. Retrieved from https://CRAN.R-project.org/package=Rfast

Pearson, K. (1902). On the change in expectation of life in man during a period of circa 2000 years. *Biometrika*, *2*, 261–264. doi:10.2307/2331493

R Core Team. (2019). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/