
pybeach: A Python package for extracting the location
of dune toes on beach profile transects
Tomas Beuzen1

1 Department of Statistics, University of British Columbia, Vancouver, Canada
DOI: 10.21105/joss.01890

Software
• Review
• Repository
• Archive

Editor: Katy Barnhart
Reviewers:

• @csherwood-usgs
• @edlazarus
• @ncohn

Submitted: 12 November 2019
Published: 20 December 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Sandy coastlines typically comprise two key parts: a beach and dune. The beach is the section
of sandy coast that is mostly above water (depending upon tide) and actively influenced by
waves, while dunes are elevated mounds/ridges of sand at the back of the beach. The interface
between the beach and dune is often characterised by a distinct change in ground slope (with
the dune having a steeper slope than the beach). Dunes are particularly important along
sandy coastlines because they provide a natural barrier to coastal hazards such as storm-
induced waves and surge. The capacity of sandy dunes to provide coastal hazard protection
depends in large part on their geometry. In particular, the location of the dune toe (the
transition point between the beach and dune) is a key factor used in coastal erosion models
and for assessing coastal vulnerability to hazards (Sallenger, 2000). There are many different
algorithms currently available for automatically detecting the dune toe on 2D cross-shore
beach profiles. The pybeach package documented herein is motivated by two key aspects:

1. to collect existing dune toe detection algorithms in a single, functional Python package;
and,

2. to provide an additional new method for detecting dune toe location based on machine
learning.

pybeach is an open-source Python package that allows a user to quickly and effectively
identify the dune toe location on 2D beach profiles (e.g., Figure 1). The user inputs into
pybeach an array of cross-shore coordinates of shape (m,) and an array of corresponding
elevations of shape (m,) for a single profile or shape (m, n) for n profiles that share the same
cross-shore coordinates. The user can then use pybeach to identify the location of the dune
toe using the following methods:

1. Maximum curvature (Stockdon, Sallenger, Holman, & Howd, 2007) - the dune toe is
defined as the location of maximum slope change;

2. Relative relief (Wernette, Houser, & Bishop, 2016) - the dune toe is defined based on
relative relief (the ratio of local morphology to computational scale);

3. Perpendicular distance - the dune toe is defined as the point of maximum perpendicular
distance from the straight line drawn between the dune crest and shoreline; and,

4. Machine learning using Random Forest classification - discussed further below.

Figure 1 shows examples of pybeach applied to different beach profile transects. The machine
learning (ML) approach to identifying the location of the dune toe is novel and aims to address
some of the issues with existing algorithms (discussed further in Section Statement of Need
below). As described further in Section pybeach, when tested on 200 unseen beach profiles,
the ML approach to dune toe detection located the dune toe more accurately than the other

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

1

https://doi.org/10.21105/joss.01890
https://github.com/openjournals/joss-reviews/issues/1890
https://github.com/TomasBeuzen/pybeach
https://doi.org/10.5281/zenodo.3579501
https://github.com/kbarnhart
https://github.com/csherwood-usgs
https://github.com/edlazarus
https://github.com/ncohn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01890

available methods. An additional benefit of the ML approach is that it outputs a probability
distribution across the length of a profile describing the probability of each individual cross-
shore location being a dune toe. This can be particularly useful for correcting errors and
interpreting beach morphology. Importantly, the methodology used to create the dune toe
ML model here (described in Section pybeach) is an example of how ML can be more generally
applied to geomorphic and Earth surface systems.

Figure 1: Example applications of pybeach.

Statement of Need

Domain experts are generally able to identify the location of the dune toe given a 2D beach
profile. However, recent improvements in coastal monitoring technologies (such as optical, Li-
dar, and satellite remote sensing), have resulted in a significant increase in coastal topographic
data, for which analysis by an expert is infeasible. As a result, there has been increased need
for reliable and efficient algorithms for extracting important features such as dune toes from
these large coastal datasets. To date, several different algorithms have been developed for this
purpose, which, for example, define the dune toe based on profile curvature (Stockdon et al.,
2007) or local relative relief (Wernette et al., 2016). However, a recent study by Wernette et
al (2018) that analysed existing approaches for extracting dune toe locations on beach profiles
found that there is considerable variation in the performance of these algorithms and expert
checking is often required to validate results. Furthermore, these algorithms typically require
considerable subjective tuning of their parameters to generate reasonable results (Wernette
et al., 2018). While experts can generally identify the dune toe on a beach profile, it is dif-
ficult to develop an algorithm that can consistently and reliably define the dune toe for the
large variety of beach profile shapes encountered in nature. Here, ML is used as an alterna-
tive approach to creating a dune toe detection model. The idea is to directly encode expert
knowledge to create a model that is applicable to a large variety of beach profile shapes, and
is scalable, such that it can be updated and improved as additional data becomes available in

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

2

https://doi.org/10.21105/joss.01890

the future. The methodology used to develop the dune toe ML model in pybeach is discussed
in Section pybeach below. An additional motivation of the pybeach package is to facilitate
the progression of coastal research in Python. MATLAB has been the primary data processing
environment in coastal research over the last decade or so, however increased use of open-
source data, software, and machine learning, has resulted in Python becoming a more popular
programming language in coastal research and practice and pybeach aims to continue and
contribute to this open-source movement.

pybeach

pybeach contains a Profile class in the beach.py module. This class contains methods for
defining the dune toe using each of the approaches listed above. pybeach utilises support
functions located within the classifier_support.py and data_support.py modules. An instance
of the Profile class can be created using an array of cross-shore coordinates of shape (m,) and
an array of corresponding elevations of shape (m,) for a single profile or shape (m, n) for n
profiles that share the same cross-shore coordinates. Profiles should be oriented with the sea
on the right hand side. Four methods may be called from an instance of the Profile class to
identify the dune toe location:

1. Profile.predict_dunetoe_ml() # machine learning method (ML)
2. Profile.predict_dunetoe_mc() # maximum curvature method (MC)
3. Profile.predict_dunetoe_rr() # relative relief method (RR)
4. Profile.predict_dunetoe_pd() # perpendicular distance method (PD)

pybeach also includes methods for identifying the dune crest (Profile.predict_dunecre
st()) and shoreline (Profile.predict_shoreline()) location on a beach profile; these
methods are highly useful for constraining the search area of the dune toe detection algorithms
to the region between the dune crest and shoreline and can be called using relevant parameters
for each of the methods above. See the relevant docstrings for further details. The latter three
dune toe detection methods above were described previously in Section Summary. The novel
dune toe location method provided by pybeach is the ML method. In fact, three pre-trained
ML models are provided with the pybeach package:

1. a “barrier-island” model. This model was developed using 1046 pre- and post- “Hur-
ricane Ivan” airborne LIDAR profiles from Santa-Rosa Island Florida (this data was
collected in 2004 and is described in (Doran et al., 2018));

2. a “wave-embayed” model. This model was developed using 1768 pre- and post- “June
2016 storm” airborne LIDAR profiles from the wave-dominated, embayed southeast
Australian coastline (this data was collected in 2016 and is described in (Harley et al.,
2017)).

3. a “mixed” model. Developed using a combination of the two above datasets.

In addition to these three pre-trained ML models, the function create_classifier() in the clas-
sifier_support.py module, allows users to create a custom ML model from their own data. As
described below, the ML models provided in pybeach are based on Random Forest classifica-
tion and the create_classifier() function will create models based on this algorithm by default
using the scikit-learn library (Pedregosa et al., 2011). However, pybeach supports ML mod-
els developed using any scikit-learn classifier that supports probabilistic prediction (e.g., kNN,
logistic regression, support vector classifier, etc.). The methodology for creating a model is
described briefly below and is demonstrated in the example Jupyter notebook contained within
the pybeach GitHub repository.

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

3

https://github.com/TomasBeuzen/pybeach/blob/master/example/example.ipynb
https://doi.org/10.21105/joss.01890

For each dataset described above, the true location of the dune toe on each indiviudal profile
transect was manually identified and quality checked by multiple experts and verified using
satelitte imagery, digital elevation models and/or in-situ observations where available. This
resulted in the best possible data to facilitate the creation of the ML models in pybeach. As
beach profile transects can vary significantly in length (i.e., from 10’s of meters to 100’s of
meters), the ML models developed here were created using fixed lengths of transect (hereafter
referred to as a “window”) instead of an entire transect (Figure 2a). Given a window, the aim
of the ML model is to predict the probability of a dune toe being located at the center of the
window. In practice, pybeach creates a window around every single cross-shore coordinate
of an inputted profile and predicts the probability that each cross-shore location is a dune
toe, eventualy selecting the point of highest probability as the dune toe. It was found that
the gradient of profile elevations within a window (instead of the raw elevations) was a more
effective and generalizable input for the model (see Figure 2b). Training the ML models
required examples of windows that are both centered around a dune toe (positive samples)
and ones that are not centered around a dune toe (negative samples). The negative samples
can be a window centered at any point other than the actual dune toe. However, the samples
should not be so close to the actual dune toe as to confuse the model. Therefore a “buffer
zone” is defined around the actual dune toe location (Figure 2a) when generating negative
samples, such that negative samples can only be generated using points outside of the buffer
zone. For each beach profile used for model training, in addition to the one positive sample
(i.e., the window centered around the true dune toe), a single negative sample is also randomly
extracted, resulting in equal numbers of positive and negative dune toe windows for model
training.

Figure 2: Example of “positive” and “negative” dune toe windows used to train the ML models in
pybeach. (a) shows the raw beach profile data with the “positive” dune toe window and location
marked in green and a randomly selected “negative” dune toe window and location markined in red.
(b) shows the gradient (first differential) of the raw profile data shown in (a) - these data are used
to train the ML models.

The “windows” are simply vectors of elevation change (the features), symmetrically centered

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

4

https://doi.org/10.21105/joss.01890

around a dune toe (positive sample, given a class label of 1) or some other random location
that is not a dune toe (negative sample, given a class label of 0). The scikit-learn (Pedregosa
et al., 2011) Random Forest classifier algorithm was used to develop the pybeach ML models
using these features and class labels, with an ensemble of 100 trees and no maximum depth.
While different algorithms were trialled, the random forest classifier gave the highest accuracy
during 10-fold cross-validation testing. In addition, it can output the probability associated
with predictions, i.e., in this case the probability of a particular point being a dune toe, which
can be highly useful for expert interpretation and for better understanding beach morphology.
The two key parameters of the ML methodology discussed above are the window size and
buffer size. During model development, a cross-validation grid search was conducted over
different values of these two parameters, and a window size of 20 m and buffer size of 20 m
were found to be optimal. However, users may adjust these parameters when generating their
own models.

Performance Assessment

To test the performance of the dune toe location algorithms in pybeach, 200 profiles were
reserved as testing data and were not at all involved in ML model development. These profiles
are located in the pybeach GitHub repository. Figure 3 and Table 1 show the performance of
the different dune toe detection algorithms (ML, MC, RR, PD) and can be reproduced using
the example Jupyter notebook contained within the pybeach GitHub repository. It can be
seen that the ML model considerably outperforms the other dune toe location algorithms for
this testing set of 200 beach profiles.

Figure 3: Boxplot of pybeach results on 200 test beach profiles.

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

5

https://github.com/TomasBeuzen/pybeach/tree/master/example
https://github.com/TomasBeuzen/pybeach/blob/master/example/example.ipynb
https://doi.org/10.21105/joss.01890

Figure 4: Mean absolute error (MAE), root-mean-squared-error (RMSE), and r-squared (R2) of the
four dune toe detection algorithms in pybeach applied to the 200 test profiles.

Installation

pybeach is available on the Python Package Index (PyPI) and can be installed with the
following:

pip install pybeach

Usage

Given an array of cross-shore coordinates, x of shape (m,) and corresponding elevations z of
shape (m,) for a single profile or shape (m, n) for n profiles, pybeach can be used as follows
to make predictions of the dune toe location:

from pybeach.beach import Profile

Some syntehtic data
import numpy as np
x = np.arange(0, 80, 0.5)
z = np.concatenate((np.linspace(4, 5, 40),

np.linspace(5, 2, 10),
np.linspace(2, 0, 91)[1:],
np.linspace(0, -1, 20)))

Instantiate Profile class
pb = Profile(x, z)

Predict dune toe location
toe_ml = pb.predict_dunetoe_ml('mixed_clf') # use the machine learning (ML) method
toe_mc = pb.predict_dunetoe_mc() # use the maximum curvature (MC) method
toe_rr = pb.predict_dunetoe_rr() # use the relative relief (RR) method
toe_pd = pb.predict_dunetoe_pd() # use the perpendicular distance (PD) method

Predict shoreline and dune crest location
crest = pb.predict_dunecrest()
shoreline = pb.predict_shoreline()

The pybeach source code can be found on github. Please see the example Jupyter notebook
for additional information on how to use pybeach and to re-create figures presented in this
paper.

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

6

https://github.com/TomasBeuzen/pybeach
https://github.com/TomasBeuzen/pybeach/blob/master/example/example.ipynb
https://doi.org/10.21105/joss.01890

Future Work

An ambition of pybeach is to act as a central repository for coastal data and algorithms
related to morphological and hydrodynamic calculations and to integrate with existing coastal
Python tools such as CoastSat (Vos, Splinter, Harley, Simmons, & Turner, 2019), py-wave-
runup (Leaman, 2019), CVNetica_VS (Beuzen & Simmons, 2019), and pyDGS (Buscombe,
2013). pybeach was created in such as way that it can easily be expanded upon in future.
Immediate goals include adding capacity to identify morphological features like dune toes
from 3D coastal data (such as digital elevation models) as well as adding new classes for the
calculation of commonly used hydrodynamic parameters (e.g., wave height, wave length, wave
period, wave runup).

Acknowledgements

I would like to thank those that contributed to the collection and processing of data used
to develop the ML models in pybeach. In particular, Dr. Mitchell Harley, Prof. Jason H.
Middleton, Peter J. Mumford, and the UNSW School of Aviation for conducting the Airborne
Lidar surveys and Lidar data pre- processing for the June 2016 storm, and Dr. Kara Doran,
Dr. Nathaniel Plant, Dr. Hilary Stockdon, and the USGS for providing the Hurricane Ivan
Lidar data, available online here.

References

Beuzen, T., & Simmons, J. (2019). A variable selection package driving netica with python.
Environmental modelling & software, 115, 1–5. doi:https://doi.org/10.1016/j.envsoft.2019.
01.018
Buscombe, D. (2013). Transferable wavelet method for grain-size distribution from images
of sediment surfaces and thin sections, and other natural granular patterns. Sedimentology,
60(7), 1709–1732. doi:https://doi.org/10.1111/sed.12049
Doran, K., Long, J. W., Birchler, J., Brenner, O. T., Hardy, M., Morgan, K. L., Stockdon,
H. F., et al. (2018). Lidar-derived beach morphology (dune crest, dune toe, and shoreline)
for u.s. Sandy coastlines (ver. 2.0, august 2018): U.S. Geological survey data release.
doi:https://doi.org/10.5066/F7GF0S0Z
Harley, M. D., Turner, I. L., Kinsela, M. A., Middleton, J. H., Mumford, P. J., Splinter,
K. D., S, P. M., et al. (2017). Extreme coastal erosion enhanced by anomalous extra-
tropical storm wave direction. Scientific reports, 7(1), 1–7. doi:https://doi.org/10.1038/
s41598-017-05792-1
Leaman, C. (2019). Chrisleaman/py-wave-runup: V0.1.4. Zenodo. doi:http://doi.org/10.
5281/zenodo.2697004
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.
Sallenger, A. H. (2000). Storm impact scale for barrier islands. Journal of Coastal Research,
16(3). Retrieved from https://journals.flvc.org/jcr/article/view/80902
Stockdon, H. F., Sallenger, A. H., Holman, R. A., & Howd, P. A. (2007). A simple model
for the spatially-variable coastal response to hurricanes. Marine Geology, 238(1-4), 1–20.
doi:10.1016/j.margeo.2006.11.004

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

7

https://github.com/kvos/CoastSat
https://github.com/chrisleaman/py-wave-runup
https://github.com/chrisleaman/py-wave-runup
https://github.com/simmonsja/CVNetica_VS
https://github.com/dbuscombe-usgs/pyDGS
https://coastal.er.usgs.gov/data-release/doi-F7GF0S0Z/
https://doi.org/https://doi.org/10.1016/j.envsoft.2019.01.018
https://doi.org/https://doi.org/10.1016/j.envsoft.2019.01.018
https://doi.org/https://doi.org/10.1111/sed.12049
https://doi.org/https://doi.org/10.5066/F7GF0S0Z
https://doi.org/https://doi.org/10.1038/s41598-017-05792-1
https://doi.org/https://doi.org/10.1038/s41598-017-05792-1
https://doi.org/http://doi.org/10.5281/zenodo.2697004
https://doi.org/http://doi.org/10.5281/zenodo.2697004
https://journals.flvc.org/jcr/article/view/80902
https://doi.org/10.1016/j.margeo.2006.11.004
https://doi.org/10.21105/joss.01890

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat:
A google earth engine-enabled python toolkit to extract shorelines from publicly available
satellite imagery. Environmental Modelling & Software, 122, 1–7. doi:https://doi.org/10.
1016/j.envsoft.2019.104528
Wernette, P., Houser, C., & Bishop, M. P. (2016). An automated approach for extracting
barrier island morphology from digital elevation models. Geomorphology, 262, 1–7. doi:10.
1016/j.geomorph.2016.02.024
Wernette, P., Thompson, S., Eyler, R., Taylor, H., Taube, C., Medlin, A., Decuir, C., et
al. (2018). Defining dunes: Evaluating how dune feature definitions affect dune interpre-
tations from remote sensing. Journal of Coastal Research, 34(6), 1460–1470. doi:10.2112/
JCOASTRES-D-17-00082.1

Beuzen, (2019). pybeach: A Python package for extracting the location of dune toes on beach profile transects. Journal of Open Source
Software, 4(44), 1890. https://doi.org/10.21105/joss.01890

8

https://doi.org/https://doi.org/10.1016/j.envsoft.2019.104528
https://doi.org/https://doi.org/10.1016/j.envsoft.2019.104528
https://doi.org/10.1016/j.geomorph.2016.02.024
https://doi.org/10.1016/j.geomorph.2016.02.024
https://doi.org/10.2112/JCOASTRES-D-17-00082.1
https://doi.org/10.2112/JCOASTRES-D-17-00082.1
https://doi.org/10.21105/joss.01890

	Summary
	Statement of Need
	pybeach
	Performance Assessment
	Installation
	Usage
	Future Work

	Acknowledgements
	References

