
Hypothesis: A new approach to property-based testing
David R. MacIver1, Zac Hatfield-Dodds2, and many other
contributors3

1 Imperial College London 2 Australian National University 3 Various
DOI: 10.21105/joss.01891

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @luizirber
• @djmitche

Submitted: 12 November 2019
Published: 21 November 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Property-based testing is a style of testing popularised by the QuickCheck family of libraries,
first in Haskell (Claessen & Hughes, 2000) and later in Erlang (Arts, Hughes, Johansson, &
Wiger, 2006), which integrates generated test cases into existing software testing workflows:
Instead of tests that provide examples of a single concrete behaviour, tests specify properties
that hold for a wide range of inputs, which the testing library then attempts to generate test
cases to refute. For a general introduction to property-based testing, see (MacIver, 2019).
Hypothesis is a mature and widely used property-based testing library for Python. It has over
100,000 downloads per week1, thousands of open source projects use it2, and in 2018 more
than 4% of Python users surveyed by the PSF reported using it3. It will be of interest both to
researchers using Python for developing scientific software, and to software testing researchers
as a platform for research in its own right.

Hypothesis for Testing Scientific Software

Python has a rich and thriving ecosystem of scientific software, and Hypothesis is helpful for
ensuring its correctness. Any researcher who tests their software in Python can benefit from
these facilities, but it is particularly useful for improving the correctness foundational libraries
on which the scientific software ecosystem is built. For example, it has found bugs in astropy
(Price-Whelan et al., 2018)4 and numpy (Walt, Colbert, & Varoquaux, 2011)5.
Additionally, Hypothesis is easily extensible, and has a number of third-party extensions for
specific research applications. For example, hypothesis-networkx6 generates graph data struc-
tures, and hypothesis-bio7 generates formats suitable for bioinformatics. As it is used by more
researchers, the number of research applications will only increase.
By lowering the barrier to effective testing, Hypothesis makes testing of research software
written in Python much more compelling, and has the potential to significantly improve the
quality of the associated scientific research as a result.

1https://pypistats.org/packages/hypothesis
2https://github.com/HypothesisWorks/hypothesis/network/dependents
3https://www.jetbrains.com/research/python-developers-survey-2018/
4e.g. https://github.com/astropy/astropy/pull/9328, https://github.com/astropy/astropy/pull/9532
5e.g. https://github.com/numpy/numpy/issues/10930, https://github.com/numpy/numpy/issues/13089,

https://github.com/numpy/numpy/issues/14239
6https://pypi.org/project/hypothesis-networkx/
7https://pypi.org/project/hypothesis-bio/

MacIver et al., (2019). Hypothesis: A new approach to property-based testing. Journal of Open Source Software, 4(43), 1891. https:
//doi.org/10.21105/joss.01891

1

https://doi.org/10.21105/joss.01891
https://github.com/openjournals/joss-reviews/issues/1891
https://github.com/HypothesisWorks/hypothesis/
https://doi.org/10.5281/zenodo.3548997
http://danielskatz.org/
https://github.com/luizirber
https://github.com/djmitche
http://creativecommons.org/licenses/by/4.0/
https://pypistats.org/packages/hypothesis
https://github.com/HypothesisWorks/hypothesis/network/dependents
https://www.jetbrains.com/research/python-developers-survey-2018/
https://github.com/astropy/astropy/pull/9328
https://github.com/astropy/astropy/pull/9532
https://github.com/numpy/numpy/issues/10930
https://github.com/numpy/numpy/issues/13089
https://github.com/numpy/numpy/issues/14239
https://pypi.org/project/hypothesis-networkx/
https://pypi.org/project/hypothesis-bio/
https://doi.org/10.21105/joss.01891
https://doi.org/10.21105/joss.01891


Hypothesis for Software Testing Research

Hypothesis is a powerful platform for software testing research, both because of the wide array
of software that can be easily tested with it, and because it has a novel implementation that
solves a major difficulty faced by prior software testing research.
Much of software testing research boils down to variants on the following problem: Given some
interestingness condition (e.g., that it triggers a bug in some software), how do we generate
a “good” test case that satisfies that condition?
Particular sub-problems of this are:

1. How do we generate test cases that satisfy difficult interestingness conditions?
2. How do we ensure we generate only valid test cases? (the test-case validity problem -

see Regehr et al. (2012))
3. How do we generate human readable test cases?

Traditionally property-based testing has adopted random test-case generation to find interest-
ing test cases, followed by test-case reduction (see Regehr et al. (2012), Zeller & Hildebrandt
(2002)) to turn them into more human readable ones, requiring the users to manually specify
a validity oracle (a predicate that identifies if an arbitrary test case is valid) to avoid invalid
test cases.
The chief limitations of this from a user’s point of view are:

• Writing correct validity oracles is difficult and annoying.
• Random generation, while often much better than hand-written examples, is not espe-

cially good at satisfying difficult properties.
• Writing test-case reducers that work well for your problem domain is a specialised skill

that few people have or want to acquire.

The chief limitation from a researcher’s point of view is that trying to improve on random
generation’s ability to find bugs will typically require modification of existing tests to support
new ways of generating data, and typically these modifications are significantly more complex
than writing the random generator would have been. Users are rarely going to be willing to
undertake the work themselves, which leaves researchers in the unfortunate position of having
to put in a significant amount of work per project to understand how to test it.
Hypothesis avoids both of these problems by using a single universal representation for test
cases. Ensuring that test cases produced from this format are valid is relatively easy, no more
difficult than ensuring that randomly generated tests cases are valid, and improvements to the
generation process can operate solely on this universal representation rather than requiring
adapting to each test.
Currently Hypothesis uses this format to support two major use cases:

1. It is the basis of its approach to test-case reduction, allowing it to support more powerful
test-case reduction than is found in most property-based testing libraries with no user
intervention.

2. It supports Targeted Property-Based Testing (Löscher & Sagonas, 2017), which uses a
score to guide testing towards a particular goal (e.g., maximising an error term). In the
original implementation this would require custom mutation operators per test, but in
Hypothesis this mutation is transparent to the user and they need only specify the goal.

The internal format is flexible and contains rich information about the structure of generated
test cases, so it is likely future versions of the software will see other features built on top of
it, and we hope researchers will use it as a vehicle to explore other interesting possibilities for
test-case generation.

MacIver et al., (2019). Hypothesis: A new approach to property-based testing. Journal of Open Source Software, 4(43), 1891. https:
//doi.org/10.21105/joss.01891

2

https://doi.org/10.21105/joss.01891
https://doi.org/10.21105/joss.01891


References

Arts, T., Hughes, J., Johansson, J., & Wiger, U. T. (2006). Testing telecoms software with
quviq QuickCheck. In M. Feeley & P. W. Trinder (Eds.), Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang (pp. 2–10). ACM. doi:10.1145/1159789.1159792
Claessen, K., & Hughes, J. (2000). QuickCheck: A lightweight tool for random testing
of Haskell programs. In M. Odersky & P. Wadler (Eds.), Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00) (pp. 268–279).
ACM. doi:10.1145/351240.351266
Löscher, A., & Sagonas, K. (2017). Targeted property-based testing. In T. Bultan & K. Sen
(Eds.), Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (pp. 46–56). ACM. doi:10.1145/3092703.3092711
MacIver, D. R. (2019). In praise of property-based testing. https://increment.com/testing/
in-praise-of-property-based-testing/.
Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil,
S., Shupe, D. L., et al. (2018). The Astropy Project: Building an Open-science Project and
Status of the v2.0 Core Package, 156, 123. doi:10.3847/1538-3881/aabc4f
Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., & Yang, X. (2012). Test-case reduction
for C compiler bugs. In J. Vitek, H. Lin, & F. Tip (Eds.), ACM SIGPLAN Conference
on Programming Language Design and Implementation, (PLDI ’12) (pp. 335–346). ACM.
doi:10.1145/2254064.2254104
Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30.
doi:10.1109/MCSE.2011.37
Zeller, A., & Hildebrandt, R. (2002). Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2), 183–200. doi:10.1109/32.988498

MacIver et al., (2019). Hypothesis: A new approach to property-based testing. Journal of Open Source Software, 4(43), 1891. https:
//doi.org/10.21105/joss.01891

3

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3092703.3092711
https://increment.com/testing/in-praise-of-property-based-testing/
https://increment.com/testing/in-praise-of-property-based-testing/
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/32.988498
https://doi.org/10.21105/joss.01891
https://doi.org/10.21105/joss.01891

	Summary
	Hypothesis for Testing Scientific Software
	Hypothesis for Software Testing Research
	References

