The Journal of Open Source Software

DOI: 10.21105/joss.01912

Software
= Review 7
= Repository &7
= Archive &

Editor: Melissa Weber
Mendonca @

Reviewers:
= Qjuliohm
= Omatbesancon

Submitted: 05 November 2019
Published: 19 February 2020

License
Authors of papers retain

copyright and release the work

under a Creative Commons
Attribution 4.0 International
License (CC-BY).

ScenTrees.jl: A Julia Package for Generating Scenario
Trees and Scenario Lattices for Multistage Stochastic
Programming

Kipngeno Benard Kiruil, Alois Pichler!, and Georg Ch. Pflug?

1 University of Technology, Chemnitz, Germany 2 University of Vienna

Summary

Stochastic processes have random and uncertain outcomes. Decisions for stochastic prob-
lems involving such processes must be made at the different stages of the problem. Math-
ematical problems with such uncertain parameters, described by an underlying probability
distribution, are sometimes intractable to solve. For algorithmic treatment, such programs
should be approximated by simpler ones, in the same manner as functions are represented
as vectors on finite grids on digital computers. In most applications, these underlying dis-
tributions are approximated by discrete distributions with a finite number of scenarios, or
possible realizations, for the random variables. This approximation procedure is often called
scenario generation.

There is a vast literature describing different methods of scenario generation. Many authors
including Hgyland & Wallace (2001), Pflug (2001), Kovacevic & Pichler (2015), Pflug &
Pichler (2015) and Pflug & Pichler (2016) have addressed different approximation techniques
for stochastic processes. But still there is no open-source implementation of the various
algorithms in the public domain.

We therefore present ScenTrees. j1, a open-source Julia (Bezanson, Edelman, Karpinski, &
Shah, 2017) package for generating scenario trees and scenario lattices which can be used, for
example, for multistage stochastic optimization problems. It allows users to represent possible
sequences of stochastic processes in form of a scenario tree in the case of a discrete time
stochastic process and a scenario lattice for Markovian data processes. In extension, it
also provides users with a platform for generating new and additional trajectories in case of a
limited data using conditional density estimation. The theory and design of the ScenTrees. j1
package follows the concept in Pflug & Pichler (2015) directly. It starts with an initial tree,
which is a qualified guess by expert opinion, and uses the stochastic approximation procedure
to improve the values on the nodes of the tree with samples form the stochastic process to
be approximated. The transition probabilities from one node to another are also addressed.

To assess the quality of this approximation, a distance between the initial distribution and
its approximation is defined. Typically, we want an approximating tree that has a minimal
distance to the original process. We therefore employ the process distance (also called
multistage distance) (Pflug, 2009) to quantify the quality of approximation of the scenario
tree. The process distance extends and generalizes the Wasserstein distance to stochastic
processes. It was analyzed by Pflug & Pichler (2012) and used by Kovacevic & Pichler (2015)
directly to generate scenario trees.

Kirui et al., (2020). ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming. 1
Journal of Open Source Software, 5(46), 1912. https://doi.org/10.21105/joss.01912


https://doi.org/10.21105/joss.01912
https://github.com/openjournals/joss-reviews/issues/1912
https://github.com/kirui93/ScenTrees.jl
https://doi.org/10.5281/zenodo.3672205
http://mtm.ufsc.br/~melissa
http://mtm.ufsc.br/~melissa
https://github.com/juliohm
https://github.com/matbesancon
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01912

The Journal of Open Source Software

Main features of the package

ScenTrees. jl is generally applicable to any type of stochastic process. The key features of
the packages are:

1. Generation of scenario trees and scenario lattices from stochastic processes using the
stochastic approximation procedure. Here, the branching structure of the scenario tree
or the scenario lattice is fixed and then stochastic approximation procedure is used to
improve/update the values of the nodes considering all the data available for every
iteration. This improvement goes on until the specified number of iterations have been
performed and then the process distance is calculated.!

2. Generation of scenarios based on limited data using conditional density estimation. In
the case of a limited data with an unknown distribution, we employ conditional density
estimation to generate new and different samples based on the these available trajec-
tories. The newly generated samples are able to capture the necessary and important
characteristics in the original data as well as patterns in the original data. These samples
can thus be used in the stochastic approximation procedure to generate scenario trees
or scenario lattices.”

Implementation details and various examples to demonstrate different methods can be found
in the package's documentation.>

The following section provides a typical example on how to use ScenTrees. j1 to generate
scenario trees and scenario lattices by combining stochastic approximation procedure and
conditional density estimation procedure.

Example: Scenario generation from observed trajectories

Consider the following comma-separated limited data. The data has 1000 trajectories in 5
stages. To use ScenTrees. j1, the first step is to load the package as well as the data into
Julia as follows.

julia> using ScenTrees, CSV
julia> df = CSV.read("../RData.csv");

julia> data = Matrix(df);

The following shows an example of a non-Markovian trajectory generated from the data using
conditional density estimation by employing the Logistic distribution for the kernels.

julia> Example = kernel_scenarios(data, Logistic; Markovian = false) ()
[1.5595,0.8150,1.5058,2.6475,4.6137]

The generated data has a length equal to the number of columns of the original data. These
generated trajectories are the ones we will use to approximate a scenario tree and a scenario
lattice in the following sections.

Tutorial4: https://kirui93.github.io/ScenTrees.jl/latest/tutorial /tutorial4/
2Tutorial41l: https://kirui93.github.io/ScenTrees.jl/latest/tutorial /tutorial41/
3Documentation: https://kirui93.github.io/ScenTrees.jl /stable/

Kirui et al., (2020). ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming. 2
Journal of Open Source Software, 5(46), 1912. https://doi.org/10.21105/joss.01912


https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorial4/
https://kirui93.github.io/ScenTrees.jl/latest/tutorial/tutorial41/
https://kirui93.github.io/ScenTrees.jl/stable/
https://doi.org/10.21105/joss.01912

SS

The Journal of Open Source Software

Approximation with a scenario tree

We want to approximate the above data using a scenario tree with a branching vector (1,3,
3,3,2) and 1,000,000 iterations as follows.

julia> kernTree = tree_approximation!(Tree([1,3,3,3,2],1),
kernel_scenarios(data, Logistic; Markovian = false),
100000,2,2) ;

julia> tree_plot(kernTree)

julia> savefig("rwdataTree.pdf")

states probabilities

stage, time

Figure 1: Tree Approximation from Kernel Density Samples

The number of possible trajectories in the scenario tree equals the number of leaves in that
scenario tree. In the above scenario tree, there are 54 possible trajectories since the number
of leaves is (1 x 3 x 3 x 3 x 2) = 54. The algorithm returns the multistage distance between
the above scenario tree and the original stochastic process as d = 0.23092.

Approximation with a scenario lattice

Consider a scenario lattice with a branching vector (1,3,4,5,6). Clearly, this scenario lattice
has 5 stages as shown by the number of elements in the branching vector, which is equal
to number of columns in the data. We consider 1,000,000 iterations for the stochastic
approximation algorithm and r=2 parameter for the multistage distance. To generate this
scenario lattice, we need Markovian trajectories and therefore we set Markovian = true to
specify that the trajectories to be generated are Markovian, which is different for scenario
trees.

julia> rwdatalattice = lattice_approximation([1,3,4,5,6],
kernel_scenarios(data, Logistic; Markovian=true),
1000000, 2);

julia> plot_lattice(rwdataLattice)

julia> savefig("rwdatalattice.pdf")

Kirui et al., (2020). ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming. 3
Journal of Open Source Software, 5(46), 1912. https://doi.org/10.21105/joss.01912


https://doi.org/10.21105/joss.01912

The Journal of Open Source Software

states probabilities

stage,time

Figure 2: Lattice Approximation from Kernel Density Samples

One should note that the number of nodes in the scenario lattice is equal to the sum of
elements in the branching structure, i.e., 14+ 3 4+ 4+ 54 6 = 19 nodes. The scenario tree
considered above has 94 nodes and 54 possible scenarios while the scenario lattice above has
19 nodes and (1 x 2 x 3 x 4 x 5) = 360 scenarios. This shows generally with fewer number of
nodes can have many possible trajectories than a scenario tree with more number of nodes.
The algorithm returns the multistage distance between the scenario lattice and the original
process as d = 1.1718.

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD).

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65-98. doi:10.1137/141000671

Hgyland, K., & Wallace, S. W. (2001). Generating scenario trees for multistage decision
problems. Management Science, 47(2), 295-307. doi:10.1287 /mnsc.47.2.295.9834

Kovacevic, R. M., & Pichler, A. (2015). Tree approximation for discrete time stochastic
processes: A process distance approach. Annals of Operations Research, 235(1), 395—
421. doi:10.1007/s10479-015-1994-2

Pflug, G. C. (2001). Scenario tree generation for multiperiod financial optimization by optimal
discretization. Mathematical Programming, 89(2), 251-271. doi:10.1007 /101070000202

Pflug, G. C., & Pichler, A. (2012). A distance for multistage stochastic optimization models.
SIAM Journal on Optimization, 22(1), 1-23. doi:10.1137/110825054

Pflug, G. C., & Pichler, A. (2015). Dynamic generation of scenario trees. Computational
Optimization and Applications, 62(3), 641-668. doi:10.1007/s10589-015-9758-0

Pflug, G. C., & Pichler, A. (2016). From empirical observations to tree models for stochastic
optimization: Convergence properties. SIAM Journal on Optimization, 26(3), 1715-1740.
doi:10.1137/15M 1043376

Kirui et al., (2020). ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming. 4
Journal of Open Source Software, 5(46), 1912. https://doi.org/10.21105/joss.01912


https://doi.org/10.1137/141000671
https://doi.org/10.1287/mnsc.47.2.295.9834
https://doi.org/10.1007/s10479-015-1994-2
https://doi.org/10.1007/s101070000202
https://doi.org/10.1137/110825054
https://doi.org/10.1007/s10589-015-9758-0
https://doi.org/10.1137/15M1043376
https://doi.org/10.21105/joss.01912

S

The Journal of Open Source Software

Pflug, G. Ch. (2009). Version-independence and nested distributions in multistage stochastic
optimization. SIAM Journal on Optimization, 20(3), 1406-1420. doi:10.1137/080718401

Kirui et al., (2020). ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming. 5
Journal of Open Source Software, 5(46), 1912. https://doi.org/10.21105/joss.01912


https://doi.org/10.1137/080718401
https://doi.org/10.21105/joss.01912

	Summary
	Main features of the package
	Example: Scenario generation from observed trajectories
	Approximation with a scenario tree
	Approximation with a scenario lattice

	Acknowledgments
	References

