
NeuroDiffEq: A Python package for solving differential
equations with neural networks
Feiyu Chen1, David Sondak1, Pavlos Protopapas1, Marios Mattheakis1,
Shuheng Liu2, Devansh Agarwal3, 4, and Marco Di Giovanni5

1 Institute for Applied Computational Science, Harvard University, Cambridge, MA, United States 2
Chongqing University, Chongqing, China 3 Department of Physics and Astronomy, Virginia
University, Morgantown, WV, United States 4 Center for Gravitational Waves and Cosmology, West
Virginia University, Morgantown, WV, United States 5 Politecnico di Milano, Milano, Italy

DOI: 10.21105/joss.01931

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @dawbarton
• @marcharper

Submitted: 01 November 2019
Published: 19 February 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Differential equations emerge in various scientific and engineering domains for modeling phys-
ical phenomena. Most differential equations of practical interest are analytically intractable.
Traditionally, differential equations are solved by numerical methods. Sophisticated algo-
rithms exist to integrate differential equations in time and space. Time integration tech-
niques continue to be an active area of research and include backward difference formulas and
Runge-Kutta methods (Conde, Gottlieb, Grant, & Shadid, 2017). Common spatial discretiza-
tion approaches include the finite difference method (FDM), finite volume method (FVM),
and finite element method (FEM) as well as spectral methods such as the Fourier-spectral
method. These classical methods have been studied in detail and much is known about their
convergence properties. Moreover, highly optimized codes exist for solving differential equa-
tions of practical interest with these techniques (Seefeldt et al., 2017; Smith & Abeysinghe,
2017). While these methods are efficient and well-studied, their expressibility is limited by
their function representation.
Artificial neural networks (ANN) are a framework of machine learning algorithms that use
a collection of connected units to learn function mappings. The most basic form of ANNs,
multilayer perceptrons, have been proven to be universal function approximators (Hornik,
Stinchcombe, & White, 1989). This suggests the possibility of using ANNs to solve dif-
ferential equations. Previous studies have demonstrated that ANNs have the potential to
solve ordinary differential equations (ODEs) and partial differential equations (PDEs) with
certain initial/boundary conditions (Lagaris, Likas, & Fotiadis, 1998). These methods show
nice properties including (1) continuous and differentiable solutions, (2) good interpolation
properties, and (3) less memory-intensive. By less memory-intensive we mean that only the
weights of the neural network have to be stored. The solution can then be recovered anywhere
in the solution domain because a trained neural network is a closed form solution. Given the
interest in developing neural networks for solving differential equations, it would be extremely
beneficial to have an easy-to-use software package that allows researchers to quickly set up
and solve problems.
NeuroDiffEq is a Python package built with PyTorch (Paszke et al., 2017) that uses ANNs
to solve ordinary and partial differential equations (ODEs and PDEs). During the release of
NeuroDiffEq we discovered that two other groups had almost simultaneously released their
own software packages for solving differential equations with neural networks: DeepXDE (Lu,
Meng, Mao, & Karniadakis, 2019) and PyDEns (Koryagin, Khudorozkov, & Tsimfer, 2019).
Both DeepXDE and PyDEns are built on top of TensorFlow (Abadi et al., 2015). DeepXDE has
an emphasis on the wide variety of problems it can solve. It supports mixing different boundary

Chen et al., (2020). NeuroDiffEq: A Python package for solving differential equations with neural networks. Journal of Open Source Software,
5(46), 1931. https://doi.org/10.21105/joss.01931

1

https://doi.org/10.21105/joss.01931
https://github.com/openjournals/joss-reviews/issues/1931
https://github.com/odegym/neurodiffeq
https://doi.org/10.5281/zenodo.3676028
https://vknight.org
https://github.com/dawbarton
https://github.com/marcharper
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01931


conditions and solving on domains with complex geometries. PyDEns is less flexible in the
range of solvable problems but provides a more user-friendly API. This trade-off is partially
determined by the way these two packages implement the solver, which will be discussed later.
NeuroDiffEq is designed to encourage the user to focus more on the problem domain (What
is the differential equation we need to solve? What are the initial/boundary conditions?)
and at the same time allow them to dig into solution domain (What ANN architecture and
loss function should be used? What are the training hyperparameters?) when they want to.
NeuroDiffEq can solve a variety of canonical PDEs including the heat equation and Poisson
equation in a Cartesian domain with up to two spatial dimensions. We are actively working
on extending NeuroDiffEq to support three spatial dimensions. NeuroDiffEq can also solve
arbitrary systems of nonlinear ordinary differential equations. Currently, NeuroDiffEq is being
used in a variety of research projects including to study the convergence properties of ANNs for
solving differential equations as well as solving the equations in the field of general relativity
(Schwarzchild and Kerr black holes).

Methods

The key idea of solving differential equations with ANNs is to reformulate the problem as an
optimization problem in which we minimize the residual of the differential equations. In a very
general sense, a differential equation can be expressed as

Lu− f = 0

where L is the differential operator, u (x, t) is the solution that we wish to find, and f is a
known forcing function. We denote the output of the neural network as uN (x, t; p) where
the parameter vector p is a vector containing the weights and biases of the neural network.
We will drop the arguments of the neural network solution in order to be concise. If uN is a
solution to the differential equation, then the residual

R (uN ) = LuN − f

will be identically zero. One way to incorporate this into the training process of a neural
network is to use the residual as the loss function. In general, the L2 loss of the residual is
used. This is the convention that NeuroDiffEq follows, although we note that other loss
functions could be conceived. Solving the differential equation is re-cast as the following
optimization problem:

min
p

(LuN − f)
2
.

It is necessary to inform the neural network about any boundary and initial conditions since it
has no way of enforcing these a priori. There are two primary ways to satisfy the boundary and
initial conditions. First, one can impose the initial/boundary conditions in the loss function.
For example, given an initial condition u (x, t0) = u0 (x), the loss function can be modified
to:

min
p

[
(LuN − f)

2
+ λ (uN (x, t0)− u0 (x))

2
]

where the second term penalizes solutions that don’t satisfy the initial condition. Larger values
of the regularization parameter λ result in stricter satisfaction of the initial condition while
sacrificing solution accuracy. However, this approach does not lead to exact satisfaction of
the initial and boundary conditions.
Another option is to transform the uN in a way such that the initial/boundary conditions
are satisfied by construction. Given an initial condition u0 (x) the neural network can be
transformed according to:

ũ (x, t) = u0 (x) +
(
1− e−(t−t0)

)
uN (x, t)

Chen et al., (2020). NeuroDiffEq: A Python package for solving differential equations with neural networks. Journal of Open Source Software,
5(46), 1931. https://doi.org/10.21105/joss.01931

2

https://doi.org/10.21105/joss.01931


so that when t = t0, ũ will always be u0. Accordingly, the objective function becomes
min
p

(Lũ− f)
2
.

This approach is similar to the trial function approach (Lagaris et al., 1998), but with a
different form of the trial function. Modifying the neural network to account for boundary
conditions can also be done. In general, the transformed solution will have the form:

ũ (x, t) = A (x, t;xboundary, t0)uN (x, t)

where A (x, t;xboundary, t0) must be designed so that ũ (x, t) has the correct boundary condi-
tions. This can be very challenging for complicated domains.
Both of these two methods have their advantages. The first way is simpler to implement and
can be more easily extended to high-dimensional PDEs and PDEs formulated on complicated
domains. The second way assures that the initial/boundary conditions are exactly satisfied.
Considering that differential equations can be sensitive to initial/boundary conditions, this is
expected to play an important role. Another advantage of the second method is that fixing
these conditions can reduce the effort required during the training of the ANN (McFall &
Mahan, 2009). DeepXDE uses the first way to impose initial/boundary conditions. PyDEns
uses a variation of the second approach to impose initial/boundary conditions. NeuroDiffEq,
the software described herein, employs the second approach.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., et al.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved
from http://tensorflow.org/

Conde, S., Gottlieb, S., Grant, Z. J., & Shadid, J. N. (2017). Implicit and implicit–explicit
strong stability preserving runge–kutta methods with high linear order. Journal of Scientific
Computing, 73(2-3), 667–690. doi:10.1063/1.4992752

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2, 359–366. doi:10.1016/0893-6080(89)90020-8

Koryagin, A., Khudorozkov, R., & Tsimfer, S. (2019). PyDEns: A python framework for
solving differential equations with neural networks. arXiv preprint arXiv:1909.11544.

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 9(5), 987–1000.
doi:10.1109/72.712178

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2019). DeepXDE: A deep learning library
for solving differential equations. arXiv preprint arXiv:1907.04502.

McFall, K. S., & Mahan, J. R. (2009). Artificial neural network method for solution of
boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE
Transactions on Neural Networks, 20(8), 1221–1233. doi:10.1109/TNN.2009.2020735

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., et al. (2017).
Automatic differentiation in PyTorch. In NIPS autodiff workshop.

Seefeldt, B., Sondak, D., Hensinger, D. M., Phipps, E. T., Foucar, J. G., Pawlowski, R. P.,
Cyr, E. C., et al. (2017). Drekar v. 2.0. Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States).

Smith, C. W., & Abeysinghe, E. (2017). The phasta science gateway: Web-based execution
of adaptive computational fluid dynamics simulations. In Proceedings of the practice and
experience in advanced research computing 2017 on sustainability, success and impact (p.
70). ACM. doi:10.1145/3093338.3104151

Chen et al., (2020). NeuroDiffEq: A Python package for solving differential equations with neural networks. Journal of Open Source Software,
5(46), 1931. https://doi.org/10.21105/joss.01931

3

http://tensorflow.org/
https://doi.org/10.1063/1.4992752
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1145/3093338.3104151
https://doi.org/10.21105/joss.01931

	Summary
	Methods
	References

