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Summary

A large portion of the water that enters a catchment as precipitation percolates through soil
and rock before exiting to water bodies or returning to the atmosphere as evapotranspira-
tion. In many places, the discharge of water stored in the subsurface is a primary source of
streamflow, and thus controls the ways in which catchments respond to stochastic variations
in precipitation and climate (Beck et al., 2013; Jasechko et al., 2014). Previous studies have
shown the importance of groundwater for a diverse range of processes, from transpiration to
solute export (Maxwell & Condon, 2016; Verseveld, McDonnell, & Lajtha, 2009), and across
diverse timescales, from rainfall-runoff response to landscape evolution (Huang & Niemann,
2006; Sklash, Farvolden, & Farvolden, 1979). Of particular relevance to landscape evolution,
groundwater can be an important control on the occurrence of overland flow, as the interac-
tion of the water table with the ground surface controls the spatial extent of saturation and
groundwater return flow (Dunne & Black, 1970). Variably-saturated groundwater flow is often
assumed to be governed by the Richards equation, which describes how water content and/or
total energy potential evolve in an idealized porous medium due to fluxes of water driven by
gradients in total potential. Numerical solutions to the Richards equation are computation-
ally expensive (e.g. Kirkland, Hills, & Wierenga, 1992), often limiting their applications. For
computational efficiency, we use the widely applied Dupuit-Forcheimer approximation, which
simplifies the Richards equation when aquifers are laterally extensive in comparison to their
thickness, and the capillary fringe above the water table is relatively thin (e.g. Childs, 1971;
Troch, Paniconi, & Van Loon, 2003). In this case, the water table is modeled as a free surface
with groundwater flow driven by gradients in water table elevation. This formulation is known
as the Boussinesq model of an unconfined aquifer. When the model assumptions are valid,
this greatly reduces the model complexity while still producing water table elevations and dis-
charges comparable to Richards equation solutions (Hilberts, Van Loon, Troch, & Paniconi,
2004).
Groundwater models of varying complexity are available for different purposes. Fully cou-
pled groundwater and surface water models such as PARFLOW (Kollet & Maxwell, 2006),
CATHY (Camporese, Paniconi, Putti, & Orlandini, 2010), and PIHM (Qu & Duffy, 2007)
solve the three-dimensional Richards equation for variably saturated flow, and couple this
with precipitation and runoff components. MODFLOW (Langevin et al., 2019) also solves the
three dimensional Richards equation, and may be coupled to precipitation and runoff models,
as in GSFLOW (Regan, Niswonger, Markstrom, Maples, & Barlow, 2018). More parsimo-
nious models (with fewer necessary parameters and calculations) are also available, such as
those that solve the hillslope storage Boussinesq equation for one-dimensional groundwater
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flow in hillslopes of non-constant width (Marçais, Dreuzy, & Erhel, 2017, pp. @broda_low–
dimensional_2012). Two-dimensional implementations of the Boussinesq model are common,
but do not appear to be widely available as open source packages. The simplicity and com-
putational efficiency of this method is advantageous for capturing the first-order effects of
groundwater flow on other Earth surface processes. More sophisticated groundwater models
may be necessary depending on the hydrological features that the user intends to capture.
Implementations of the Boussinesq model often encounter numerical instabilities where the
water table intersects the surface and groundwater return flow occurs through a seepage face.
This is due to the presence of a discontinuity in the energy gradient from inside the hillslope
(where it is determined by the water table) to the seepage face (where it is determined by the
topography). Marçais et al. (2017) introduced a regularization that smooths the transition
between subsurface flow and surface flow. Although introduced for numerical stability and not
based on physical principles, this smoothing may reproduce the effect of subgrid heterogeneity
where saturation within a grid cell is unlikely to be homogenous or well-reproduced by a binary
condition (saturated vs unsaturated).
The GroundwaterDupuitPercolator solves the governing groundwater flow equations with
an explicit, forward in time finite volume method, using the Marçais et al. (2017) regularization
at seepage faces. While the explicit method limits the maximum timestep that can be used
without jeopardizing stability, the model includes an adaptive timestep solver that subdivides
the user-provided timestep in order to satisfy a Courant–Friedrichs–Lewy stability criterion.
The GroundwaterDupuitPercolator can be implemented on both regular (e.g. rectangular
and hexagonal) and irregular grids determined by the user. Recharge, hydraulic conductivity,
and porosity may be specified as single values uniform over the model domain, or as vectors
on the nodes (recharge, porosity) or links (hydraulic conductivity) of the grid. Link hydraulic
conductivity can also be specified from a two-dimensional hydraulic conductivity tensor using
an included function. For mass balance calculations, the model includes methods to deter-
mine the total groundwater storage on the grid domain, the total recharge flux in, and total
groundwater and surface water fluxes leaving through the boundaries.
The GroundwaterDupuitPercolator is implemented in Landlab, a Python-based open
source Earth surface modeling toolkit (Hobley et al., 2017). Landlab has a modular framework,
which allows for easy coupling of different process components to meet the needs of the
modeler. For example, the surface water flux from the GroundwaterDupuitPercolator can
be passed to the FlowAccumulator module to route overland flow and calculate discharge at
nodes. A summary of links to the documentation and example Jupyter notebooks is provided
by the submodule README. A diverse array of components are available, yielding many
possibilities for model coupling that have not yet been explored. Given the importance of
groundwater for many Earth surface processes, this component is an important contribution
to the Landlab environment.
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