
The DynaGUI package
Benjamin Edward Bolling1, 2

1 European Spallation Source ERIC 2 MAX IV Laboratory
DOI: 10.21105/joss.01942

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @Chilipp
• @pythonpanda2

Submitted: 01 November 2019
Published: 28 December 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

At large research facilities and industrial complexes, there is a need for control system user
interfaces. However, modern facilities also require continuous upgrading, maintenance, and
development, which means that also the control systems need to be upgraded. In order to
simplify the construction of control systems and diagnostics, the DynaGUI (Dynamic Graphical
User Interface) package was created. The main idea of this package is to get rid of the middle-
hand coding needed between hardware and the user by supplying the user with a simple GUI
toolkit for generating diagnostics- and control-system GUIs in accordance with any user’s need.
Initially developed at MAX IV Laboratory (Tavares et al., 2014), the initial and main users for
this package are control rooms at large-scale research facilities, such as particle accelerators.
In order to further enhance the user-friendliness of this package, a simple system of configu-
ration files has been developed, enabling users to configure the applications using any plain
text-editor. The DynaGUI package consists of three applications:

• DynaGUI TF, a true/false (boolean) dynamic control system,

• DynaGUI Alarms, a dynamic diagnostics system for continuously monitoring of the values
for a set of attributes, and

• DynaGUI NV, a system for observing attributes’ numerical-, string-, vector- or waveform
values.

Each DynaGUI application’s layout is designed for simplicity. At the top of each application is
a combobox with the list of attributes defined. Below the combobox is a button called ‘Edit
DynaGUI,’ which opens a window for configuring the DynaGUI. Below the ‘Edit DynaGUI’
button is the dynamic field, in which a dynamic control panel is generated. Below the dynamic
control panel field is the DynaGUI status bar, showing the last action carried out, error
messages, or if an alarm is active (for DynaGUI Alarms). Below the status bar are the load
and save buttons for loading or saving DynaGUI configuration files. These also have a tool-tip
function showing the last loaded or saved file (in the current session). The simplest method
to launch DynaGUI is via its launcher (Launcher.py), in which the user can select a control
system and either directly define the path to the configuration file or browse to it. If the field
is left blank, DynaGUI will load with a predefined setup.
DynaGUI TF (True/False) is dynamical in the sense that the user can insert the name of any
device’s servers and attributes that, in current state, are True or False. The GUI then builds
itself up by creating buttons for each device server that will display the boolean of the device in
the combobox selected attribute. First, the application will try to connect to the device’s server
as entered, and then read in the attribute selected in the combobox and paint the button’s
background colour: green meaning True, red meaning False, fuchsia meaning attribute not
existing or not boolean, and maroon meaning that the device cannot be connected.

Bolling, B. E., (2020). The DynaGUI package. Journal of Open Source Software, 5(56), 1942. https://doi.org/10.21105/joss.01942 1

https://doi.org/10.21105/joss.01942
https://github.com/openjournals/joss-reviews/issues/1942
https://github.com/benjaminbolling/DynaGUI
https://doi.org/10.5281/zenodo.4396227
https://www.linkedin.com/in/fortinbras/
https://github.com/Chilipp
https://github.com/pythonpanda2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01942


The DynaGUI Alarms (Dynamic Alarms GUI) has been designed to monitor numerical values
and notify user(s) if a condition is not fulfilled. To edit the alarms GUI, the user has to press
Edit DynaGUI to open an edit-panel. In the left window of the edit-panel, the user has to
define the list of devices’ server domains and signals to monitor. In the right window of the
edit-panel, the user has to define descriptions of the different alarm signals as they should
appear in the DynaGUI Alarms control panel, as well as the sweep-time (how frequently
the system should check the values). The DynaGUI Alarms’ dynamic panel can be divided
into three columns for each device and attribute it monitors. The first column contains the
descriptions of the alarms, the second column contains the numerical values from the last
sweep, the fourth column contains the alarm limit, and the third column contains a combobox
with two gaps (larger than or smaller than) which points in the way it should between the
read value and the alarm limit. For gap criteria that are fulfilled, the background colour of
the alarm description is painted lime-green. If a gap criteria is not fulfilled, the computer’s
speakers will emit an alarm, and the display will show a message in the DynaGUI Alarms’
status bar. The alarm description’s background colour becomes red.
DynaGUI NV is the most advanced tool in the package. Each device has two columns. The
first column is a button with the server address of the device, whilst the value of the selected
attribute is shown in the second column, enabling users to inspect values in a simple and fast
manner. DynaGUI NV also allows for launching a controller for the device (using AtkPanel
for Tango Controls (Chaize et al., 1999)) or for initializing 1D plots or 2D colormaps of the
selected attribute for all devices for which the attribute is valid. Each device’s control panel
button becomes painted in lime-green if the attribute is valid, in fuchsia if the attribute is
not existing for the device and maroon if a connection to the device cannot be established.
The plot initialization automatically launches for all devices for which the attribute is valid.
The plotting tool has been elaborately described in the DynaGUI documentation. Features
in the 1D graph tool include plotting read values in real time, and setting up and plotting
equations (or functions) by using NumPy (van der Walt et al., 2011) of the read values as
well as combining the read values with one another. Examples are shown in Figure 1. The
1D graph tool supports both scalar and vector (or waveform) plotting in real time, and plot
data can be saved and loaded.
The package aims to enable users to construct dynamic GUIs for multiple purposes, and the
author is open to implementing new functions and control systems on demand. For testing
purposes, an artificial control system ‘Randomizer’ has been created displaying only random
values. In this DynaGUI version, the DynaGUI panels are constructed using PyQt (Riverbank
Computing Limited, 2016), with versions 4 and 5 supported. The author is working on fully
implementing the PyEPICS (PyEpics, 2014) package as well as a new Finance package built
on Pandas (McKinney, 2011) and Matplotlib (Hunter, 2007) in order to have more sources
to monitor live-stream data from and hence to demonstrate the openness that serves as the
core of the package.

Bolling, B. E., (2020). The DynaGUI package. Journal of Open Source Software, 5(56), 1942. https://doi.org/10.21105/joss.01942 2

https://doi.org/10.21105/joss.01942


Figures

Figure 1: A dynamic control panel of DynaGUI NV has been configured (top-left), from which a 1D
realtime plot has been launched for 4 artificial devices for a made-up attribute (right). Using this
tool, two other lines have been set up as functions of two input data streams, with equations defined
in the bottom-left figure and then plotted.

Acknowledgements

The author wants to thank Bernhard Meirose at the MAX IV Laboratory for the discussion
that inspired and led me into developing this package. The author also recognises and wants to
thank Jonas Petersson and Robin Svard at the MAX IV Laboratory for developing the original
2D Spectrogram Application (for monitoring transverse beam position via Beam Position
Monitors at the MAX IV Laboratory storage rings). The author also wants to thank Bernhard
Meirose at the MAX IV Laboratory for giving the inspiration and awakening the idea to create
this package.

References

Chaize, J. M., Gotz, A., Klotz, W.-D., Meyer, J., Perez, M., & Taurel, E. (1999). TANGO -
an object oriented control system based on CORBA. ICALEPCS’99.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

McKinney, W. (2011). Pandas: A foundational python library for data analysis and statistics.
Python for High Performance and Scientific Computing, 14.

PyEpics: Interface for the Channel Access (CA) library of the EPICS Control System to the
Python Programming language. (2014). https://cars9.uchicago.edu/software/python/
pyepics3/

Riverbank Computing Limited. (2016). PyQt5: Python bindings for the Qt cross platform UI
and application toolkit. https://www.riverbankcomputing.com/software/pyqt/

Bolling, B. E., (2020). The DynaGUI package. Journal of Open Source Software, 5(56), 1942. https://doi.org/10.21105/joss.01942 3

https://doi.org/10.1109/MCSE.2007.55
https://cars9.uchicago.edu/software/python/pyepics3/
https://cars9.uchicago.edu/software/python/pyepics3/
https://www.riverbankcomputing.com/software/pyqt/
https://doi.org/10.21105/joss.01942


Tavares, P. F., Leemann, S. C., Sjostrom, M., & Andersson, A. (2014). The MAX IV
storage ring project. Journal of Synchrotron Radiation, 21. https://doi.org/10.1107/
S1600577514011503

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure
for efficient numerical computation. Computing in Science Engineering, 13(2), 22–30.
https://doi.org/10.1109/MCSE.2011.37

Bolling, B. E., (2020). The DynaGUI package. Journal of Open Source Software, 5(56), 1942. https://doi.org/10.21105/joss.01942 4

https://doi.org/10.1107/S1600577514011503
https://doi.org/10.1107/S1600577514011503
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.01942

	Summary
	Figures
	Acknowledgements
	References

