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Summary

WordTokenizers.jl is a tool to help users of the Julia programming language (Bezanson, Edel-
man, Karpinski, & Shah, 2014) work with natural language. In natural language processing
(NLP) tokenization refers to breaking a text up into parts – the tokens. Generally, tokenization
refers to breaking a sentence up into words and other tokens such as punctuation. Comple-
mentary to word tokenization is sentence segmentation or sentence splitting (occasionally
also called sentence tokenization), where a document is broken up into sentences, which can
then be tokenized into words. Tokenization and sentence segmentation are some of the most
fundamental operations to be performed before applying most NLP or information retrieval
algorithms.
WordTokenizers.jl provides a flexible API for defining fast tokenizers and sentence segmentors.
Using this API several standard tokenizers and sentence segmenters have been implemented,
allowing researchers and practitioners to focus on the higher details of their NLP tasks.
WordTokenizers.jl does not implement significant novel tokenizers or sentence segmenters.
Rather, it contains ports/implementations of the well-established and commonly used algo-
rithms. At present, it contains rule-based methods primarily designed for English. Several of
the implementations are sourced from the Python NLTK project (Bird, Klein, & Loper, 2009;
Bird & Loper, 2004), although these were in turn sourced from older pre-existing methods.
WordTokenizers.jl uses a TokenBuffer API and its various lexers for fast word tokenization.
TokenBuffer turns the string into a readable stream. A desired set of TokenBuffer lexers are
used to read characters from the stream and flush out into an array of tokens. The package
provides the following tokenizers made using this API.

• A Tweet Tokenizer (Potts, 2019) for casual text.
• A general purpose NLTK Tokenizer (Bird et al., 2009; Bird & Loper, 2004).
• An improved version of the multilingual Tok-tok tokenizer (Dehdari, 2014, 2015).

With various lexers written for the TokenBuffer API, users can also create their high-speed
custom tokenizers with ease. The package also provides a simple reversible tokenizer (Mielke,
2019; Mielke & Eisner, 2018) that works by leaving certain merge symbols, as a means to
reconstruct tokens into the original string.
WordTokenizers.jl exposes a configurable default interface, which allows the tokenizer and
sentence segmenters to be configured globally (where this is used). This allowed for easy
benchmarking and comparisons of different methods.
WordTokenizers.jl is currently being used by packages like TextAnalysis.jl, Transformers.jl and
CorpusLoaders.jl for tokenizing text.
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Other similar software

Figure 1: Speed comparison of Tokenizers on IMDB Movie Review Dataset

There are various NLP libraries and toolkits written in other programming languages, available
to Julia users for tokenization. NLTK and SpaCy packages provide users with a variety of
tokenizers, accessed to Julia users via PyCall. Shown above is a performance benchmark
of using some of the WordTokenizers.jl tokenizers vs PyCalling the default tokenizers from
NLTK and SpaCy. This was evaluated on the ~127,000 sentences of the IMDB Movie Review
Dataset. It can be seen that the performance of WordTokenizers.jl is very strong.
There are many more packages like Stanford CoreNLP, AllenNLP providing a couple of basic
tokenizers. However, WordTokenizers.jl is faster and simpler to use, providing with a wider
variety of tokenizers and a means to build custom tokenizers.
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