
WordTokenizers.jl: Basic tools for tokenizing natural
language in Julia
Ayush Kaushal1, Lyndon White2, Mike Innes3, and Rohit Kumar4

1 Indian Institute of Technology, Kharagpur 2 The University of Western Australia 3 Julia
Computing 4 ABV-Indian Institute of Information Technology and Management Gwalior

DOI: 10.21105/joss.01956

Software
• Review
• Repository
• Archive

Editor: William Rowe
Reviewers:

• @leios
• @ninjin

Submitted: 07 December 2019
Published: 19 February 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

WordTokenizers.jl is a tool to help users of the Julia programming language (Bezanson, Edel-
man, Karpinski, & Shah, 2014) work with natural language. In natural language processing
(NLP) tokenization refers to breaking a text up into parts – the tokens. Generally, tokenization
refers to breaking a sentence up into words and other tokens such as punctuation. Comple-
mentary to word tokenization is sentence segmentation or sentence splitting (occasionally
also called sentence tokenization), where a document is broken up into sentences, which can
then be tokenized into words. Tokenization and sentence segmentation are some of the most
fundamental operations to be performed before applying most NLP or information retrieval
algorithms.
WordTokenizers.jl provides a flexible API for defining fast tokenizers and sentence segmentors.
Using this API several standard tokenizers and sentence segmenters have been implemented,
allowing researchers and practitioners to focus on the higher details of their NLP tasks.
WordTokenizers.jl does not implement significant novel tokenizers or sentence segmenters.
Rather, it contains ports/implementations of the well-established and commonly used algo-
rithms. At present, it contains rule-based methods primarily designed for English. Several of
the implementations are sourced from the Python NLTK project (Bird, Klein, & Loper, 2009;
Bird & Loper, 2004), although these were in turn sourced from older pre-existing methods.
WordTokenizers.jl uses a TokenBuffer API and its various lexers for fast word tokenization.
TokenBuffer turns the string into a readable stream. A desired set of TokenBuffer lexers are
used to read characters from the stream and flush out into an array of tokens. The package
provides the following tokenizers made using this API.

• A Tweet Tokenizer (Potts, 2019) for casual text.
• A general purpose NLTK Tokenizer (Bird et al., 2009; Bird & Loper, 2004).
• An improved version of the multilingual Tok-tok tokenizer (Dehdari, 2014, 2015).

With various lexers written for the TokenBuffer API, users can also create their high-speed
custom tokenizers with ease. The package also provides a simple reversible tokenizer (Mielke,
2019; Mielke & Eisner, 2018) that works by leaving certain merge symbols, as a means to
reconstruct tokens into the original string.
WordTokenizers.jl exposes a configurable default interface, which allows the tokenizer and
sentence segmenters to be configured globally (where this is used). This allowed for easy
benchmarking and comparisons of different methods.
WordTokenizers.jl is currently being used by packages like TextAnalysis.jl, Transformers.jl and
CorpusLoaders.jl for tokenizing text.

Kaushal et al., (2020). WordTokenizers.jl: Basic tools for tokenizing natural language in Julia. Journal of Open Source Software, 5(46), 1956.
https://doi.org/10.21105/joss.01956

1

https://doi.org/10.21105/joss.01956
https://github.com/openjournals/joss-reviews/issues/1956
https://github.com/JuliaText/WordTokenizers.jl/
https://doi.org/10.5281/zenodo.3663390
http://willrowe.net
https://github.com/leios
https://github.com/ninjin
http://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaText/TextAnalysis.jl
https://github.com/chengchingwen/Transformers.jl
https://github.com/JuliaText/CorpusLoaders.jl
https://doi.org/10.21105/joss.01956


Other similar software

Figure 1: Speed comparison of Tokenizers on IMDB Movie Review Dataset

There are various NLP libraries and toolkits written in other programming languages, available
to Julia users for tokenization. NLTK and SpaCy packages provide users with a variety of
tokenizers, accessed to Julia users via PyCall. Shown above is a performance benchmark
of using some of the WordTokenizers.jl tokenizers vs PyCalling the default tokenizers from
NLTK and SpaCy. This was evaluated on the ~127,000 sentences of the IMDB Movie Review
Dataset. It can be seen that the performance of WordTokenizers.jl is very strong.
There are many more packages like Stanford CoreNLP, AllenNLP providing a couple of basic
tokenizers. However, WordTokenizers.jl is faster and simpler to use, providing with a wider
variety of tokenizers and a means to build custom tokenizers.

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2014). Julia: A fresh approach to
numerical computing. doi:10.1137/141000671

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O’Reilly
Media, Inc. Retrieved from http://www.nltk.org/

Bird, S., & Loper, E. (2004). NLTK: The natural language toolkit. In Proceedings of the
ACL 2004 on interactive poster and demonstration sessions (p. 31). Association for
Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/P04-3031

Dehdari, J. (2014). A neurophysiologically-inspired statistical language model (PhD thesis).
The Ohio State University.

Dehdari, J. (2015). Tok-tok: A fast, simple, multilingual tokenizer. Retrieved from https:
//github.com/jonsafari/tok-tok

Kaushal et al., (2020). WordTokenizers.jl: Basic tools for tokenizing natural language in Julia. Journal of Open Source Software, 5(46), 1956.
https://doi.org/10.21105/joss.01956

2

https://github.com/nltk/nltk
https://github.com/explosion/spaCy
https://github.com/stanfordnlp/CoreNLP
https://github.com/allenai/allennlp/
https://github.com/Ayushk4/Tweet_tok_analyse/tree/master/speed
https://doi.org/10.1137/141000671
http://www.nltk.org/
http://www.aclweb.org/anthology/P04-3031
https://github.com/jonsafari/tok-tok
https://github.com/jonsafari/tok-tok
https://doi.org/10.21105/joss.01956


Mielke, S. J. (2019). A simple, reversible, language-agnostic tokenizer. Retrieved from https:
//sjmielke.com/papers/tokenize/

Mielke, S. J., & Eisner, J. (2018). Spell once, summon anywhere: A two-level open-vocabulary
language model. CoRR, abs/1804.08205. doi:10.1609/aaai.v33i01.33016843

Potts, C. (2019). Sentiment symposium tutorial: Tokenizing. Retrieved 2011, from http:
//sentiment.christopherpotts.net/tokenizing.html#sentiment

Kaushal et al., (2020). WordTokenizers.jl: Basic tools for tokenizing natural language in Julia. Journal of Open Source Software, 5(46), 1956.
https://doi.org/10.21105/joss.01956

3

https://sjmielke.com/papers/tokenize/
https://sjmielke.com/papers/tokenize/
https://doi.org/10.1609/aaai.v33i01.33016843
http://sentiment.christopherpotts.net/tokenizing.html#sentiment
http://sentiment.christopherpotts.net/tokenizing.html#sentiment
https://doi.org/10.21105/joss.01956

	Summary
	Other similar software

	References

