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Summary

scikit-hubness is a Python package for efficient nearest neighbor search in high-dimensional
spaces. Hubness is an aspect of the curse of dimensionality in nearest neighbor graphs.
Specifically, it describes the increasing occurrence of hubs and antihubs with growing data
dimensionality: Hubs are objects, that appear unexpectedly often among the nearest neighbors
of others objects, while antihubs are never retrieved as neighbors. As a consequence, hubs
may propagate their information (for example, class labels) too widely within the neighbor
graph, while information from antihubs is depleted. These semantically distorted graphs can
reduce learning performance in various tasks, such as classification (Radovanović, Nanopoulos,
& Ivanović, 2010), clustering (Schnitzer & Flexer, 2015), or visualization (Flexer, 2015).
Hubness is known to affect a variety of applied learning systems (Angiulli, 2018), causing—for
instance—overrepresentation of certain songs in music recommendations (Flexer & Stevens,
2018), or improper transport mode detection (Feldbauer, Leodolter, Plant, & Flexer, 2018).
Multiple hubness reduction algorithms have been developed to mitigate these effects (Flexer
& Schnitzer, 2013; Hara, Suzuki, Kobayashi, Fukumizu, & Radovanovic, 2016; Schnitzer,
Flexer, Schedl, & Widmer, 2012). We compared these algorithms exhaustively in a recent
survey (Feldbauer & Flexer, 2019), and developed approximate hubness reduction methods
with linear time and memory complexity (Feldbauer et al., 2018).
Currently, there is a lack of fully-featured, up-to-date, user-friendly software dealing with
hubness. Available packages miss critical features and have not been updated in years (“Hub-
Miner,” 2015), or are not particularly user-friendly (“Hub-Toolbox,” 2019). In this paper
we describe scikit-hubness, which provides powerful, readily available, and easy-to-use
hubness-related methods:

• hubness analysis (“Is my data affected by hubness?”): Assess hubness with several
measures, including k-occurrence skewness (Radovanović et al., 2010), and Robin-Hood
index (Feldbauer et al., 2018).

• hubness reduction (“How can we improve neighbor retrieval in high dimensions?”): Mu-
tual proximity, local scaling, and DisSimLocal are currently supported, as they performed
best in our survey. Exact methods as well as their approximations are available.

• approximate neighbor search (“Does it work for large data sets?”): Several methods
are currently available, including locality-sensitive hashing (Aumüller, Christiani, Pagh,
& Vesterli, 2019) and hierarchical navigable small-world graphs (Malkov & Yashunin,
2018).
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scikit-hubness builds upon the SciPy stack (Virtanen, Gommers, Oliphant, Haberland, &
others, 2019) and is integrated into the scikit-learn environment (Pedregosa, Varoquaux,
Gramfort, Michel, & others, 2011), enabling rapid adoption by Python-based machine learning
researchers and practitioners. Convenient interfaces to hubness-reduced neighbors-based learn-
ing are available in the skhubness.neighbors subpackage. It acts as a drop-in replacement
for sklearn.neighbors, featuring all its functionality, and adding support for hubness reduc-
tion, where applicable. This includes, for example, the supervised KNeighborsClassifier
and RadiusNeighborsRegressor, NearestNeighbors for unsupervised learning, and the
general kneighbors_graph.
scikit-hubness is developed using several quality assessment tools and principles, such as
PEP8 compliance, unit tests with high code coverage, continuous integration on all major
platforms (Linux, MacOS, Windows), and additional checks by LGTM. The source code is
available at https://github.com/VarIr/scikit-hubness under the BSD 3-clause license. The
online documentation is available at https://scikit-hubness.readthedocs.io/. Install from the
Python package index with $ pip install scikit-hubness.

Outlook

Future plans include adaption to significant changes of sklearn.neighbors introduced in
version 0.22 in December 2019: The KNeighborsTransformer and RadiusNeighborsTrans
former transform data into sparse neighbor graphs, which can subsequently be used as input
to other estimators. Hubness reduction and approximate search can then be implemented
as Transformers. This provides the means to turn skhubness.neighbors from a drop-
in replacement of sklearn.neighbors into a scikit-learn plugin, which will (1) accelerate
development, (2) simplify addition of new hubness reduction and approximate search methods,
and (3) facilitate more flexible usage.
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