
LFSpy: A Python Implementation of Local Feature
Selection for Data Classification with scikit-learn
Compatibility
Kiret Dhindsa1, 2, 3, Oliver Cook1, Thomas Mudway1, Areeb Khawaja1,
Ron Harwood1, and Ranil Sonnadara1, 2, 3

1 Research and High Performance Computing, McMaster University 2 Vector Institute 3
Department of Surgery, McMaster University

DOI: 10.21105/joss.01958

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey
Reviewers:

• @effigies
• @sauln

Submitted: 12 December 2019
Published: 10 May 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Background

Successful machine learning depends on inputting features, or variables, that provide informa-
tion that is useful for solving the problem at hand. Supervised classification, where the goal
is to label or categorize new data based on patterns identified in labeled training data, is the
most commonly applied task in machine learning. For these problems, the features used to
train a machine learning model must help discriminate between different categories of data
samples. However, it is not always possible to know a priori which of the available features
are informative, and which are not. The presence of uninformative features can contribute
noise and reduce the robustness and performance of classification models. Therefore, an im-
portant step in machine learning is the selection of informative features and the omission of
uninformative features.

Summary

Where typical feature selection methods find an optimal feature subset that is applied globally
to all data samples, Local Feature Selection (LFS) finds optimal feature subsets for each local
region of a data space. In this way, LFS is better able to adapt to regional variability and
non-stationarity in a sample space. In addition, the method is paired with a simple classifier
based on class similarity which can account for the fact that different samples may be modeled
using different feature subsets.
Local feature selection is performed by promoting class-wise clustering in the neighbourhood
around each point, i.e., by finding the subset of available features that minimizes the average
distance between points belonging to the same class, while maximizing the distances between
classes. Thus, a feature subspace is identified that maximizes classifiability locally around
each point. However, since this feature space can be different for each local region, stan-
dard classifiers cannot be readily applied. Instead, a notion of similarity between samples is
introduced that intuitively lends itself to classification. Since LFS defines a local region for
each sample, the regions are overlapping. Therefore, each point is represented in a number of
feature spaces. Therefore, a class label can be assigned by accumulating the class labels of the
nearest neighbours to a sample in each of these feature spaces. Full details of LFS, including
experimental results demonstrating its effectiveness compared to other feature selection and
classification methods on several datasets, are given in (Armanfard, Reilly, & Komeili, 2015)
and (Armanfard, Reilly, & Komeili, 2017).

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

1

https://doi.org/10.21105/joss.01958
https://github.com/openjournals/joss-reviews/issues/1958
https://github.com/McMasterRS/LFSpy
https://doi.org/10.5281/zenodo.3813708
https://dfm.io
https://github.com/effigies
https://github.com/sauln
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01958


LFSpy was designed to be used for researchers working on any supervised learning problem,
but is especially powerful for data that are non-stationary, non-ergodic, or that otherwise
do not cluster well into classes. A prominant example of data with these properties is elec-
troencephalography (EEG) time-series. In this field, LFS has been used to continuously detect
characteristic brain responses to auditory stimuli in coma patients (Armanfard, Komeili, Reilly,
& Connoly, 2018), and is being tested for detection of traumatic brain injury (Boshra et al.,
2019).

Usage

LFSpy is a Python implementation of LFS that follows the scikit-learn (Pedregosa et
al., 2011) class structure, and can therefore be used as part of a scikit-learn Pipeline
like other classifiers. Open-source code, full documentation, and a demo using sample data
are available at https://github.com/McMasterRS/LFSpy. Using LFS to train a model and
test on new data is made simple with LFSpy and can be done in just a few lines of code.
Usage follows the standard format used for scikit-learn classifiers. First, an LFS object
is created to hold the model configuration, parameters, and once trained, the trained model
itself. The implementation is flexible in that it gives the user control over a number of optional
parameters, including for example, the size of the local region used for feature selection. The
following training and testing functions can then be called from that object:

• lfs.fit: trains an LFS model given training data and corresponding training labels
• lfs.predict: for a trained model, outputs class label predictions given testing data
• lfs.score: outputs the classification error for the testing data in total, and by class,

given testing data and ground truth testing labels

Given training and testing data that are compatible with scikit-learn models, a typical
example of model training and testing is as follows:

from LFSpy import LocalFeatureSelection
lfs = LocalFeatureSelection(alpha=19,

gamma=0.2,
tau=2,
sigma=1,
n_beta=20,
nrrp=2000,
knn=1)

lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)

LFSpy is also fully compatible with the scikit-learn Pipeline method:

from LFSpy import LocalFeatureSelection
from sklearn.pipeline import Pipeline
lfs = LocalFeatureSelection(alpha=19,

gamma=0.2,
tau=2,
sigma=1,
n_beta=20,
nrrp=2000,
knn=1)

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

2

https://github.com/McMasterRS/LFSpy
https://doi.org/10.21105/joss.01958


pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)

The dependencies for LFSpy are as follows:

• Python 3
• NumPy>=1.14
• SciPy>=1.1
• Scikit-learn>=0.18.2

Comparison to Other Classifiers

A comparison of classification accuracies obtained with LFS and two standard scikit-learn
pipelines are shown below. The Random Forest classifier (RFC) and a linear Support Vector
Machine (SVM) with univariate feature selection using the F-statistic are used for comparison.
For all tests, we use default settings. For consistency, none of the methods are provided with
a priori information about the number of informative features to select. Both LFS and RFC
choose the number of appropriate features internally. The SVM must be given a number of
features to choose, so we set the number of features to 25% of the total number of available
features for this example.
Results are obtained with two sample datasets that are representative of the intended use
case of LFS. The first is a sample dataset used to illustrate the utility of LFS. This dataset
is synthetically generated with 100 training samples and 108 test samples. The number of
informative vs. uninformative features in this dataset are unknown. The second dataset is
the Iris dataset included with scikit-learn, which contains 100 samples and four features
(50 are used for training, and 50 are used for testing; all four features are informative).
To illustrate the value of LFS, we show the classification accuracy of each method after
appending increasing numbers of up to 1000 non-informative Guassian features. Each feature
was randomly generated with zero mean and a standard deviation between 0 and 3, sampled
from a uniform distribution.
It can be seen that with both datasets LFS outperforms the other two methods, particularly
when the number of non-informative features becomes large. LFS remains relatively stable in
classification performance, whereas RFC and SVM experience significant degradation as the
number of non-informative features grows well past 100.

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

3

https://numpy.org/
https://www.scipy.org/
https://scikit-learn.org/stable/index.html
https://doi.org/10.21105/joss.01958


Classification accuracies with the sample synthetic dataset

Figure 1: Comparison of classification accuracies obtained with different classifiers using the sample
synthetic dataset available with the LFSpy package.

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

4

https://doi.org/10.21105/joss.01958


Classification accuracies with the Iris dataset

Figure 2: Comparison of classification accuracies obtained with different classifiers and increasing
numbers of non-informative features using the Fisher Iris dataset available in scikit-learn.

Comparison using data generated with scikit-learn

For this comparison we use the same classifiers with the same configurations as described
above, but instead make use of make_classification function in scikit-learn. This
function provides us with more control so we can generate a dataset with properties that
illustrate in more detail where LFSpy is particularly useful. In this example, we generate
synthetic datasets to simulate a two-class classification problem with 50 samples (40 used
for training, and 10 used for testing). In total, 12 datasets are created with varying degrees
of complexity introduced through different properties. First, each class can be distributed
over one, two, or three clusters (i.e., if each class is represented by three clusters, then it is
made up of three distinct distributions with different statistics). Four datasets are created
within each of these cases: 1) a simple problem with 5 informative features and zero non-
informative features, 2) five informative features with 40 redundant features, (r=40) made up
as combinations of the five informative features, 3) five informative features with 40 repeated
features (s=40) made up as copies of the five redundant features, and 4) five informative
features with 20 redundant features and 20 repeated features (r=20, s=20). All datasets
were generated with 5% noisy labels (i.e., for 5% of the samples, the true class was assigned
randomly), and a class separability of 1.0.
The results of this experiment, shown below, demonstrate how LFSpy can have an advantage
in increasingly complex classification problems with large numbers of non-informative features
of different kinds. In particular, its strategy of breaking up a classification problem into many
small local problems instead of attempting to find a global solution allows LFS to perform
well when each class is represented by multiple clusters with different statistics.

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

5

https://doi.org/10.21105/joss.01958


Figure 3: Comparison of classification accuracies obtained with different classifiers and different kinds
of complexities using data generated with scikit-learn.datasets.make_classification.

Acknowledgments

Funding for this project was obtained through the CANARIE Research Software Program Local
Support Initiative.

References

Armanfard, N., Komeili, M., Reilly, J. P., & Connoly, J. (2018). A machine learning framework
for automatic and continuous MMN detection with preliminary results for coma outcome
prediction. IEEE journal of biomedical and health informatics. doi:10.1109/JBHI.2018.
2877738

Armanfard, N., Reilly, J. P., & Komeili, M. (2015). Local feature selection for data classifica-
tion. IEEE transactions on pattern analysis and machine intelligence, 38(6), 1217–1227.
doi:10.1109/TPAMI.2015.2478471

Armanfard, N., Reilly, J. P., & Komeili, M. (2017). Logistic localized modeling of the sample
space for feature selection and classification. IEEE transactions on neural networks and
learning systems, 29(5), 1396–1413. doi:10.1109/TNNLS.2017.2676101

Boshra, R., Dhindsa, K., Boursalie, O., Ruiter, K. I., Sonnadara, R., Samavi, R., Doyle, T. E.,
et al. (2019). From group-level statistics to single-subject prediction: Machine learning
detection of concussion in retired athletes. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 27(7), 1492–1501. doi:10.1109/TNSRE.2019.2922553

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

6

https://doi.org/10.1109/JBHI.2018.2877738
https://doi.org/10.1109/JBHI.2018.2877738
https://doi.org/10.1109/TPAMI.2015.2478471
https://doi.org/10.1109/TNNLS.2017.2676101
https://doi.org/10.1109/TNSRE.2019.2922553
https://doi.org/10.21105/joss.01958


Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Dhindsa et al., (2020). LFSpy: A Python Implementation of Local Feature Selection for Data Classification with scikit-learn Compatibility.
Journal of Open Source Software, 5(49), 1958. https://doi.org/10.21105/joss.01958

7

https://doi.org/10.21105/joss.01958

	Background
	Summary
	Usage
	Comparison to Other Classifiers
	Classification accuracies with the sample synthetic dataset
	Classification accuracies with the Iris dataset
	Comparison using data generated with scikit-learn


	Acknowledgments
	References

