
Annotation Sniffer: A tool to Extract Code Annotations
Metrics
Phyllipe Lima1,2, Eduardo Guerra2, and Paulo Meirelles3,4

1 CDG, National Institute of Telecommunications - INATEL, Brazil 2 LAC, National Institute for
Space Research - INPE, Brazil 3 EPM, Federal University of São Paulo - UNIFESP, Brazil 4 IME,
University of São Paulo - USP, Brazil

DOI: 10.21105/joss.01960

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @arcuri82
• @danieledipompeo

Submitted: 29 November 2019
Published: 20 March 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Enterprise Java frameworks and APIs such as JPA (Java Persistence API), Spring, EJB (En-
terprise Java Bean), and JUnit make extensive use of code annotations as means to allow
applications to configure custom metadata and execute specific behavior. Observing the top
30 ranked Java projects on GitHub, they have, on average, 76% of classes with at least one
annotation. Some projects may have more than 90% of its classes annotated. To measure
code annotations usage and analyze their distribution, our work in (P. Lima et al., 2018) pro-
posed a novel suite of software metrics dedicated to code annotations. We used a Percentile
Rank Analysis approach (Meirelles, 2013) to obtain threshold values.
Source code metrics retrieve information from software to assess its characteristics. Well-
known techniques use metrics associated with rules to detect bad smells on the source code
(Lanza & Marinescu, 2006). However, traditional code metrics do not recognize code anno-
tations on programming elements, which can lead to an incomplete code assessment (Guerra,
Silveira, & Fernandes, 2009). For instance, a domain class can be considered simple using
current complexity metrics. However, it can contain complex annotations for object-XML
mapping. Also, using a set of annotations couples the application to a framework that can
interpret them and current coupling metrics does not explicitly handle this.
To automate the process of extracting the novel suite of software metrics for code annotation
in (P. Lima et al., 2018), we developed an open-source tool called Annotation Sniffer (ASn
iffer). It is a command-line tool that reads java source code, extracts the metrics values,
and outputs an XML report. Potential ASniffer users are software engineers or researchers
interested in static code analysis and mining software repositories. Additionally, given that it
is an extensible tool, other developers can implement their metrics and integrate them in the
extraction process. Figure 1 presents an overview diagram of the ASniffer tool.

Figure 1: ASniffer overview diagram
We previously presented the first version of this tool and published it on a workshop (P. S.
Lima et al., 2018). The current version has an improved extensibility mechanism as well as a

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

1

https://doi.org/10.21105/joss.01960
https://github.com/openjournals/joss-reviews/issues/1960
https://github.com/phillima/asniffer/
https://doi.org/10.5281/zenodo.3701910
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/arcuri82
https://github.com/danieledipompeo
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01960


more compact and complete report, to support our ongoing research about code annotations
and metadata in object-oriented programming.

Metadata and Code Annotations

A variety of contexts in the computer science field uses the term “metadata”. In all of them,
it means data referring to the data itself. In databases, the data are the ones persisted,
and the metadata is their description, i.e., the structure of the table. In the object-oriented
context, the data are the instances, and the metadata is their description, i.e., information that
describes the class. As such, fields, methods, super-classes, and interfaces are all metadata
of a class instance. A class field, in turn, has its type, access modifiers, and name as its
metadata (Guerra, 2014).
Some programming languages provide features that allow custom metadata to be defined and
included directly on programming elements. This feature is supported in languages such as
Java, through the use of annotations and in C#, by attributes. A benefit is that the metadata
definition is closer to the programming element, and its definition is less verbose than external
approaches. Annotations are a feature of the Java language, which became official on version
1.5. The code on Listing 1 presents a simple Player class using code annotation to perform
the object-relational mapping.

@Entity
@Table(name="Players")
public class Player {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private int id;
@Column(name = "health")
private float health;

@Column(name = "name")
private String name;

//getters and setters omitted
}

Listing 1: Example of code annotations
To map this Player class to a table in a database, to store the player’s information, we need
to pass in some extra information about these code elements. In other words, we need
to define an object-relational mapping, and we need to configure which elements should be
mapped to a column, table, and among others. Using code annotations provided by the JPA
API, this mapping is easily achieved. When this code gets executed, the framework consuming
the annotations knows how to perform the expected behavior.

Annotation Metrics

Our work in (P. Lima et al., 2018) proposed a novel suite of software metrics dedicated to
code annotations. In this section, we briefly describe them and demonstrate how they are
calculated. We have three categories of metrics:

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

2

https://doi.org/10.21105/joss.01960


• Class Metric: Outputs one value per class.
• Code Element Metric: Outputs one value per code element (fields, methods, among

others).
• Annotation Metric: Outputs one value per code annotation.

We use the code presented in Listing 2 as an example.

import javax.persistence.AssociationOverrides;
import javax.persistence.AssociationOverride;
import javax.persistence.JoinColumn;
import javax.persistence.NamedQuery;
import javax.persistence.DiscriminatorColumn;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;

@AssociationOverrides(value = {
@AssociationOverride(name="ex",

joinColumns = @JoinColumn(name="EX_ID")),
@AssociationOverride(name="other",

joinColumns = @JoinColumn(name="O_ID"))})
@NamedQuery(name="findByName",

query="SELECT c " +
"FROM Country c " +
"WHERE c.name = :name")

@Stateless
public class Example {...

@TransactionAttribute(SUPPORTS)
@DiscriminatorColumn(name = "type", discriminatorType = STRING)
public String exampleMethodA(){...}

@TransactionAttribute(SUPPORTS)
public String exampleMethodB(){...}

}

Listing 2: Example of code to extract annotation metrics.

• Annotations in Class (AC): It counts the number of annotations declared on all code
elements in a class, including nested annotations. In our example code, the value of AC
is equal to 10. It is a Class Metric.

• Unique Annotations in Class (UAC): While AC counts all annotations, even repeated
ones, UAC counts only distinct annotations. Two annotations are equal if they have
the same name, and all arguments match. For instance, both annotations @Associat
ionOverride are different, for they have a nested annotation @JoinColumn that have
different arguments. The first is EX_ID while the latter is O_ID. Hence they are distinct
annotations and will be computed separately. The UAC value for the example class is
nine. Note that the annotation @TransactionAttribute() is counted only once. It
is a Class Metric.

• Annotations Schemas in Class (ASC): An annotation schema represents a set of related
annotations provided by a framework or tool. This measures how coupled a class is to
a framework. This value is obtained by tracking the imports used for the annotations.
On the example code, the ASC value is two. The import javax.persistence is a

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

3

https://doi.org/10.21105/joss.01960


schema provided by the JPA, and the import javax.ejb is provided by EJB. It is a
Class Metric.

• Arguments in Annotations (AA): Annotations may contain arguments. They can be
a string, integer, or even another annotation. The AA metric counts the number of
arguments contained in the annotation. For each annotation in the class, an AA value
will be generated. For example, the @AssociationOverrides has only one argument
named value, so the AA value is equal one. But @AssociationOverride, contains
two arguments, name and joinColumns, so the AA value is two. It is an Annotation
Metric.

• Annotations in Element Declaration (AED): The AED metric counts how many anno-
tations are declared in each code element, including nested annotations. In the example
code, the method exampleMethodA has an AED value of two, it has the @Transacti
onAttribute and @DiscriminatorColumn. It is a Code Element Metric.

• Annotation Nesting Level (ANL): Annotations can have other annotations as arguments,
which translates into nested annotations. ANL measures how deep an annotation is
nested. The root level is considered value zero. The annotations @Stateless has ANL
value of zero, while @JoinColumn has ANL equals two. This data is because it has
@AssociationOverride as a first level, and then the @AssociationOverrides adds
another nesting level, hence the value ANL is two. It is an Annotation Metric.

• LOC in Annotation Declaration (LOCAD): LOC (Line of Code), is a well-known metric
that counts the number of code lines. We proposed LOCAD as a variant of LOC that
counts the number of lines used in an annotation declaration. @AssociationOverrides
has a LOCAD value of five, while @NamedQuery has LOCAD equals four. It is an
Annotation Metric.

Annotation Sniffer

The ASniffer tool uses the JDT1(Java Development Tools) API to build the Abstract Syntax
Tree (AST) from a text file containing the source code. The ASniffer traverses this AST,
visiting the nodes and gathering information about the code elements. After the processing
is done, it generates an XML as output.
To create the AST (Abstract Syntax Tree), we use the method ASTParser.createASTs.
This method is exposed by the JDT and receives an array of strings containing the file path
of each source code that we wish to analyze. Another parameter for the method is a class
that will handle the compilation units. Our class is the MetricsExecutor and this class must
extend the FileASTRequestor. From inside MetricsExecutor we call every metric class
and pass in the compilation unit (generated by the ASTParser).
To understand the extraction process, we will use a snippet from the code that collects the
Annotations in Class metric, presented in Listing 3. Since this is a Class Metric,
i.e., outputs one value per class, it must extend the ASTVisitor class and implement our
custom interface IClassMetricCollector. The superclass provides methods that are used
to visit the nodes from the Compilation Unit. For instance, for the AC metric, we visit every
annotation encountered, and increment the value for annotations. Our custom interface
provides two methods, the first one, (execute()), initializes the extraction process, while the
second one, (setResult()), is where the result is stored.

@ClassMetric
public class AC extends ASTVisitor implements IClassMetricCollector{

1https://www.eclipse.org/jdt/

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

4

https://www.eclipse.org/jdt/
https://doi.org/10.21105/joss.01960


//We also visist MarkerAnnotation and SingleMemberAnnotation
private int annotations = 0;
@Override
public boolean visit(NormalAnnotation node) {

annotations++;
return super.visit(node);

}
@Override
public void execute(CompilationUnit cu, MetricResult result,

AMReport report) {
cu.accept(this);

}
@Override
public void setResult(MetricResult result) {

result.addClassMetric("AC",annotations);
}

}

Listing 3: Snippet from the code that implements the Annotations in Class metric

Related Work

We developed the ASniffer tool to support the research published on (P. Lima et al., 2018),
i.e., collect the novel suite of annotation metrics. Given that these were unpublished metrics,
there are no available tools for comparison. However, other tools perform static code analysis
and collect metrics, such as the CK Tool (Aniche, 2015). This open-source tool collects the
well-known CK (Chidamber-Kemerer) Metrics Suite (Chidamber & Kemerer, 1991) as well as
other object-oriented metrics for Java projects. The CK Tool was also developed using the
JDT API to build the Abstract Syntax Tree, which served as a reference for the development
of the ASniffer.

License

Annotation Sniffer is licensed under the GNU Lesser General Public License v3.0

Acknowledgements

This work is supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São
Paulo), grant 2014/16236-6 and CAPES (Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior)

References

Aniche, M. (2015). Java code metrics calculator (ck).
Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object-oriented

design. In Proceedings of oopsla’91 (pp. 197–211).

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

5

https://doi.org/10.21105/joss.01960


Guerra, E. (2014). Componentes reutilizáveis em java com reflexão e anotações (1st ed.).
Casa do Código.

Guerra, E. M., Silveira, F. F., & Fernandes, C. T. (2009). Questioning traditional metrics for
applications which uses metadata-based frameworks. In Proceedings of the 3rd workshop
on assessment of contemporary modularization techniques (acom’09), october (Vol. 26,
pp. 35–39).

Lanza, M., & Marinescu, R. (2006). Object-oriented metrics in practice: Using software met-
rics to characterize, evaluate, and improve the design of object-oriented systems. Springer.
doi:10.1007/3-540-39538-5

Lima, P., Guerra, E., Meirelles, P., Kanashiro, L., Silva, H., & Silveira, F. (2018). A metrics
suite for code annotation assessment. Journal of Systems and Software, 137, 163–183.
doi:10.1016/j.jss.2017.11.024

Lima, P. S., Guerra, E. M., & Meirelles, P. R. (2018). Annotation sniffer: Open source tool
for annotated code elements. In CBSoft 2018 - tools session ().

Meirelles, P. R. M. (2013). Monitoring source code metrics in free software projects (PhD
thesis). Department of Computer Science – Institute of Mathematics; Statistics of Univer-
sity of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45134/
tde-27082013-090242/pt-br.php

Lima et al., (2020). Annotation Sniffer: A tool to Extract Code Annotations Metrics. Journal of Open Source Software, 5(47), 1960.
https://doi.org/10.21105/joss.01960

6

https://doi.org/10.1007/3-540-39538-5
https://doi.org/10.1016/j.jss.2017.11.024
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-27082013-090242/pt-br.php
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-27082013-090242/pt-br.php
https://doi.org/10.21105/joss.01960

	Summary
	Metadata and Code Annotations
	Annotation Metrics
	Annotation Sniffer
	Related Work
	License
	Acknowledgements
	References

