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Summary

This work describes dafsa, a Python library for computing graphs from lists of strings for
identifying, visualizing, and inspecting patterns of substrings. The library is designed for
usage by linguists in studies on morphology and formal grammars, and is intended for faster,
easier, and simpler generation of visualizations. It collects frequency weights by default, it can
condense structures, and it provides several export options. Figure 1 depicts a basic DAFSA,
based upon five English words and generated with default settings.

Figure 1: Visual representation of a DAFSA for the list of strings "dib", "tip", "tips", and "top".

Background

Deterministic Acyclic Finite State Automata (DAFSA, also known as “Directed Acyclic Word
Graphs”, or DAWG) are data structures extended from tries and used to describe collections of
strings through directed acyclic graphs with a sole source vertex (the start of all sequences),
at least one sink node (each pointed to by one or more edges), and edge labels carrying
information on the sequence of characters that form the strings (Black & Pieterse, 1998;
Blumer et al., 1985; Lucchesi & Kowaltowski, 1993). A compact variant (Crochemore &
Vérin, 1997) condenses the structure by merging every node which is an only child with its
parent, concatenating their labels. The resulting graph is a particular finite state recognizer,
accepting all and only the strings from the original list.

DAFSAs are mostly used for the memory-efficient storage of sets of strings, such as in spelling
correction and in non-probabilistic set membership check (Blumer et al., 1985; Ciura & De-
orowicz, 2001; Havon, 2011; Lucchesi & Kowaltowski, 1993). While there have been proposals
for applying them to the treatment and analysis of pattern repetitions, especially in genomics
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(Crochemore & Vérin, 1997), no general-purpose library designed for such exploration and vi-
sualization is available. In specific, as a consequence of most implementations being designed
for an efficient set membership testing, no available library builds DAFSAs that collect node
and edge frequency.

Installation, Usage, & Examples

The library can be installed with the standard pip tool for package management:
$ pip install dafsa

The documentation offers detailed instructions on how to use the library. For most purposes
it is sufficient to create a new DAFSA object and initialize it with the list of strings, as in the
generation of the graph for Figure 1:

>>> from dafsa import DAFSA
>>> d — DAFSA([”dib”, "tap", ”tOp", "taps", ”tOpS"])

The library will by default collect frequency weights for each edge and node. We can export the
resulting structures in either a custom textual format (using the standard repr() command)
or in GML format (using the .write_gml() method), or convert them to equivalent graphs
in the networkx library (using the .to_graph() method). Visualizations can be generated
through DOT source code (using the .to_dot() method), and manipulated according to
the users’ preferences and needs. An auxiliary .write_figure() method allows to generate
figures in PNG, SVG, or PDF format if graphviz is available, as in Figure 2.

Figure 2: A non-condensed DAFSA for a list of 9 Italian words phonetically transcribed.

Graphs are not condensed by default, as in Figure 2, but condensation can be performed by
setting the condense flag when initializing the object, as done in the following code snippet
and illustrated in Figure 3:

>>> yords = [

"o k: jo", "orek: jo", "nazo",

"'se", "'sentire", "senso",

"'gsuardare", "amare", "vw 0ol ar e"]
>>> yords = [word.split() for word in words]

>>> d = DAFSA(words, condense=True)
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Figure 3: A condensed DAFSA for the same list of 9 Italian words phonetically transcribed used in
Figure 2.

A command-line dafsa tool is provided along with the library. Assuming the data is found in
a phonemes. txt file, with one sequence per line, a PDF version of Figure 3 can be generated
with the following call, where -c instructs to condense the graph, -t specifies the output
format, and -o the output file:

$ dafsa -c -t pdf -o phonemes.pdf phonemes.txt

Alternatives

The main alternatives to this library, such as the Python DAWG package, are based on dwagdic
C++ library, designed for production usage of memory- and speed-efficient data structures.
The unsupported adfa and minim packages by Daciuk, Mihov, Watson, & Watson (2000) are
closer in intention, as well as the Python prototype by Havon (2011). Similar functionalities
are offered by several tools for analysis of genetic data, usually as an extension of sequence
alignments, but none as an autonomous tool that can be employed with generic lists of strings.

Code and Documentation Availability

The dafsa source code is available on GitHub at https://github.com /tresoldi/dafsa.

The documentation is available at https://dafsa.readthedocs.io/.
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