DOI: 10.21105/joss.01986

Software
= Review 7
= Repository @
= Archive &7

Editor: George K. Thiruvathukal
x4
Reviewers:

= Q@geoffbacon
= @desilinguist

Submitted: 12 December 2019
Published: 19 February 2020

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

The Journal of Open Source Software

DAFSA: a Python library for Deterministic Acyclic Finite
State Automata

Tiago Tresoldi!

1 Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human
History

Summary

This work describes dafsa, a Python library for computing graphs from lists of strings for
identifying, visualizing, and inspecting patterns of substrings. The library is designed for
usage by linguists in studies on morphology and formal grammars, and is intended for faster,
easier, and simpler generation of visualizations. It collects frequency weights by default, it can
condense structures, and it provides several export options. Figure 1 depicts a basic DAFSA,
based upon five English words and generated with default settings.

Figure 1: Visual representation of a DAFSA for the list of strings "dib", "tip", "tips", and "top".

Background

Deterministic Acyclic Finite State Automata (DAFSA, also known as “Directed Acyclic Word
Graphs”, or DAWG) are data structures extended from tries and used to describe collections of
strings through directed acyclic graphs with a sole source vertex (the start of all sequences),
at least one sink node (each pointed to by one or more edges), and edge labels carrying
information on the sequence of characters that form the strings (Black & Pieterse, 1998;
Blumer et al., 1985; Lucchesi & Kowaltowski, 1993). A compact variant (Crochemore &
Vérin, 1997) condenses the structure by merging every node which is an only child with its
parent, concatenating their labels. The resulting graph is a particular finite state recognizer,
accepting all and only the strings from the original list.

DAFSAs are mostly used for the memory-efficient storage of sets of strings, such as in spelling
correction and in non-probabilistic set membership check (Blumer et al., 1985; Ciura & De-
orowicz, 2001; Havon, 2011; Lucchesi & Kowaltowski, 1993). While there have been proposals
for applying them to the treatment and analysis of pattern repetitions, especially in genomics

Tresoldi, (2020). DAFSA: a Python library for Deterministic Acyclic Finite State Automata. Journal of Open Source Software, 5(46), 1986. 1
https://doi.org/10.21105/joss.01986


https://doi.org/10.21105/joss.01986
https://github.com/openjournals/joss-reviews/issues/1986
https://github.com/tresoldi/dafsa
https://doi.org/10.5281/zenodo.3668870
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/geoffbacon
https://github.com/desilinguist
http://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/dafsa/
https://doi.org/10.21105/joss.01986

The Journal of Open Source Software

(Crochemore & Vérin, 1997), no general-purpose library designed for such exploration and vi-
sualization is available. In specific, as a consequence of most implementations being designed
for an efficient set membership testing, no available library builds DAFSAs that collect node
and edge frequency.

Installation, Usage, & Examples

The library can be installed with the standard pip tool for package management:
$ pip install dafsa

The documentation offers detailed instructions on how to use the library. For most purposes
it is sufficient to create a new DAFSA object and initialize it with the list of strings, as in the
generation of the graph for Figure 1:

>>> from dafsa import DAFSA
>>> d — DAFSA([”dib”, "tap", ”tOp", "taps", ”tOpS"])

The library will by default collect frequency weights for each edge and node. We can export the
resulting structures in either a custom textual format (using the standard repr() command)
or in GML format (using the .write_gml() method), or convert them to equivalent graphs
in the networkx library (using the .to_graph() method). Visualizations can be generated
through DOT source code (using the .to_dot() method), and manipulated according to
the users’ preferences and needs. An auxiliary .write_figure() method allows to generate
figures in PNG, SVG, or PDF format if graphviz is available, as in Figure 2.

Figure 2: A non-condensed DAFSA for a list of 9 Italian words phonetically transcribed.

Graphs are not condensed by default, as in Figure 2, but condensation can be performed by
setting the condense flag when initializing the object, as done in the following code snippet
and illustrated in Figure 3:

>>> yords = [

"o k: jo", "orek: jo", "nazo",

"'se", "'sentire", "senso",

"'gsuardare", "amare", "vw 0ol ar e"]
>>> yords = [word.split() for word in words]

>>> d = DAFSA(words, condense=True)

Tresoldi, (2020). DAFSA: a Python library for Deterministic Acyclic Finite State Automata. Journal of Open Source Software, 5(46), 1986. 2
https://doi.org/10.21105/joss.01986


https://dafsa.readthedocs.io/en/latest/quickstart.html
https://doi.org/10.21105/joss.01986

The Journal of Open Source Software

Figure 3: A condensed DAFSA for the same list of 9 Italian words phonetically transcribed used in
Figure 2.

A command-line dafsa tool is provided along with the library. Assuming the data is found in
a phonemes. txt file, with one sequence per line, a PDF version of Figure 3 can be generated
with the following call, where -c instructs to condense the graph, -t specifies the output
format, and -o the output file:

$ dafsa -c -t pdf -o phonemes.pdf phonemes.txt

Alternatives

The main alternatives to this library, such as the Python DAWG package, are based on dwagdic
C++ library, designed for production usage of memory- and speed-efficient data structures.
The unsupported adfa and minim packages by Daciuk, Mihov, Watson, & Watson (2000) are
closer in intention, as well as the Python prototype by Havon (2011). Similar functionalities
are offered by several tools for analysis of genetic data, usually as an extension of sequence
alignments, but none as an autonomous tool that can be employed with generic lists of strings.

Code and Documentation Availability

The dafsa source code is available on GitHub at https://github.com /tresoldi/dafsa.

The documentation is available at https://dafsa.readthedocs.io/.

Acknowledgements

The author has received funding from the European Research Council (ERC) under the Eu-
ropean Union's Horizon 2020 research and innovation programme (grant agreement No. ERC
Grant #715618, Computer-Assisted Language Comparison).

Tresoldi, (2020). DAFSA: a Python library for Deterministic Acyclic Finite State Automata. Journal of Open Source Software, 5(46), 1986. 3
https://doi.org/10.21105/joss.01986


https://github.com/pytries/DAWG
https://github.com/tresoldi/dafsa
https://dafsa.readthedocs.io/
https://cordis.europa.eu/project/rcn/206320/factsheet/en
https://cordis.europa.eu/project/rcn/206320/factsheet/en
https://digling.org/calc/
https://doi.org/10.21105/joss.01986

The Journal of Open Source Software

References

Black, P. E., & Pieterse, V. (Eds.). (1998). Directed acyclic word graph. In Dictionary
of algorithms and data structures. Gaithersburg: National Institute of Standards and
Technology.

Blumer, A. C., Blumer, J. A., Haussler, D., Ehrenfeucht, A., Chen, M.-T., & Seiferas, J. I.
(1985). The smallest automation recognizing the subwords of a text. Theoretical computer
science, 40, 31-55. doi:10.1016,/0304-3975(85)90157-4

Ciura, M. G., & Deorowicz, S. (2001). How to squeeze a lexicon. Software: Practice and
Experience, 31(11), 1077-1090. doi:10.1002/spe.402

Crochemore, M., & Vérin, R. (1997). On compact directed acyclic word graphs. In Structures
in logic and computer science (pp. 192-211). Springer.

Daciuk, J., Mihov, S., Watson, B. W., & Watson, R. E. (2000). Incremental construction of
minimal acyclic finite-state automata. Computational linguistics, 26(1), 3-16.

Havon, S. (2011). Compressing dictionaries with a dawg. Retrieved from http://stevehanov.
ca/blog/?id=115

Lucchesi, C. L., & Kowaltowski, T. (1993). Applications of finite automata representing
large vocabularies. Software: Practice and Experience, 23(1), 15-30. doi:10.1002/spe.
4380230103

Tresoldi, (2020). DAFSA: a Python library for Deterministic Acyclic Finite State Automata. Journal of Open Source Software, 5(46), 1986. 4
https://doi.org/10.21105/joss.01986


https://doi.org/10.1016/0304-3975(85)90157-4
https://doi.org/10.1002/spe.402
http://stevehanov.ca/blog/?id=115
http://stevehanov.ca/blog/?id=115
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.21105/joss.01986

	Summary
	Background
	Installation, Usage, & Examples
	Alternatives
	Code and Documentation Availability
	Acknowledgements
	References

