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Summary

A common task within machine learning is to train a model to predict an unknown outcome
(response variable) based on a set of known input variables/features. When using such models
for real life applications, it is often crucial to understand why a certain set of features lead to
a specific prediction. Most machine learning models are, however, complicated and hard to
understand, so that they are often viewed as “black-boxes”, that produce some output from
some input.
Shapley values (Shapley, 1953) is a concept from cooperative game theory used to distribute
fairly a joint payoff among the cooperating players. Štrumbelj & Kononenko (2010) and later
Lundberg & Lee (2017) proposed to use the Shapley value framework to explain predictions by
distributing the prediction value on the input features. Established methods and implementa-
tions for explaining predictions with Shapley values like Shapley Sampling Values (Štrumbelj
& Kononenko, 2014), SHAP/Kernel SHAP (Lundberg & Lee, 2017), and to some extent
TreeSHAP/TreeExplainer (Lundberg et al., 2020; Lundberg, Erion, & Lee, 2018), assume
that the features are independent when approximating the Shapley values. The R-package
shapr, however, implements the methodology proposed by Aas, Jullum, & Løland (2019),
where predictions are explained while accounting for the dependence between the features,
resulting in significantly more accurate approximations to the Shapley values.

Implementation

shapr implements a variant of the Kernel SHAP methodology (Lundberg & Lee, 2017) for
efficiently dealing with the combinatorial problem related to the Shapley value formula. The
main methodological contribution of Aas et al. (2019) is three different methods to estimate
certain conditional expectation quantities, referred to as the empirical, Gaussian and copula
approach. Additionaly, the user has the option of combining the three approaches. The
implementation supports explanation of models fitted with the following functions natively:
stats::lm (R Core Team, 2019), stats::glm (R Core Team, 2019), ranger::ranger
(Wright & Ziegler, 2017), mgcv::gam (Wood, 2017) and xgboost::xgboost/xgboost::xg
b.train (Chen et al., 2019). Moreover, the package supports explanation of custom models
by supplying two simple additional class functions.
For reference, the package also includes a benchmark implementation of the original (indepen-
dence assuming) version of Kernel SHAP (Lundberg & Lee, 2017), providing identical results
to the “official” Kernel SHAP Python package shap. This allows the user to easily see the
effect and importance of accounting for the feature dependence.
The user interface in the package has largely been adopted from the R-package lime (Pedersen
& Benesty, 2019). The user first sets up the explainability framework with the shapr function.
Then the output from shapr is provided to the explain function, along with the data to
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explain the prediction and the method that should be used to estimate the aforementioned
conditional expectations.
The majority of the code is in plain R (R Core Team, 2019), while the most time consuming
operations are coded in C++ through the Rcpp package (Eddelbuettel & François, 2011)
and RcppArmadillo package (Eddelbuettel & Sanderson, 2014) for computational speed up.
For RAM efficiency and computational speed up of typical bookeeping operations, we utilize
the data.table package (Dowle & Srinivasan, 2019) which does operations “by reference”,
i.e. without memory copies.
For a detailed description of the underlying methodology that the package implements, we
refer to the paper (Aas et al., 2019) which uses the package in examples and simulation
studies. To get started with the package, we recommend going through the package vignette
and introductory examples available at the package’s pkgdown site.
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