
outsider: Install and run programs, outside of R, inside of
R
Dominic J. Bennett1, 2, Hannes Hettling3, Daniele Silvestro1, 2, Rutger
Vos3, and Alexandre Antonelli1, 2, 4

1 Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden 2 Department
of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30
Gothenburg, Sweden 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The
Netherlands 4 Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK

DOI: 10.21105/joss.02038

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @arfon

Submitted: 21 January 2020
Published: 23 January 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Statement of need

Enable integration of R and non-R code and programs to facilitate reproducible workflows.

Summary

In many areas of research, product development and software engineering, analytical pipelines –
workflows connecting output from multiple software – are key for processing and running tests
on data. They can provide results in a consistent, modular and transparent manner. Pipelines
also make it easier to demonstrate the reproducibility of one’s research as well as enabling
analyses that update as new data are added. Not all analyses, however, can necessarily be
run or coded in one’s favoured programming language as different parts of an analysis may
require external software or packages. Integrating a variety of programs and software can
lead to issues of portability (additional software may not run across all operating systems)
and versioning errors (differing arguments across additional software versions). For the ideal
pipeline, it should be possible to install and run any command-line software, within the main
programming language of the pipeline, without concern for software versions or operating
system. R (CRAN, 2019) is one of the most popular computer languages amongst researchers,
and many packages exist for calling programs and code from non-R sources (e.g. sys (Ooms,
2019) for shell commands, reticulate (RStudio, 2019) for python and rJava (Urbanek,
2019) for Java). To our knowledge, however, no R package exists with the ability to launch
external programs originating from any UNIX command-line source.
The outsider packages work through docker (Docker Inc., 2020a) – a service that, through
OS-level virtualization, enables deployment of isolated software “containers” – and a code-
sharing service, e.g. GitHub (GitHub, 2019), to allow a user to install and run, in theory, any
external, command-line program or package, on any of the major operating systems (Windows,
Linux, OSX).

How it works

outsider packages provide an interface to install and run outsider modules. These modules
are hostable on GitHub (GitHub, 2019), GitLab (GitLab, 2019) and/or BitBucket (BitBucket,
2019) and consist of two parts: a (barebones) R package and a Dockerfile. The Dockerfile
details the installation process for an external program contained within a Docker image,

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

1

https://doi.org/10.21105/joss.02038
https://github.com/openjournals/joss-reviews/issues/2038
https://github.com/ropensci/outsider
https://doi.org/10.5281/zenodo.3615177
http://arfon.org/
https://github.com/arfon
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

while the R package comprises functions and documentation for interacting with the external
program via a Docker container. For many programs, Dockerfiles are readily available online
and require minor changes to adapt for outsider. By default, a module’s R code simply
passes command-line arguments through Docker. After installation, a module’s functions can
then be imported and launched using outsider functions. Upon running a module’s code,
outsider code will first launch a Docker container of the image as described by the module’s
Dockerfile. outsider then facilitates the communication between the module’s R code and
the Docker container that hosts the external program (developers of modules have the choice
of determining default behaviours for handling generated files). outsider modules thus
wrap external command-line programs into R functions in a convenient manner. outsider
functions allow users to look up available modules and determine build statuses (i.e. whether
the package is passing its online tests) before installing.
At time of writing, outsider modules for some of the most popular bioinformatics tools have
been developed: BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990), MAFFT (Katoh,
Kuma, Toh, & Miyata, 2005), *BEAST (Bouckaert, 2019), RAxML (Stamatakis, 2006),
bamm (Rabosky, n.d.), PyRate (Silvestro, Salamin, & Schnitzler, 2014). (See the outsider
website for an up-to-date and complete list). All that is required to run these modules is R and
Docker. Docker Desktop (Docker Inc., 2020b) can be installed for all operating systems but
for older versions of OSX and Windows the legacy “Docker Toolbox” (Docker Inc., 2020c) may
instead need to be installed. (Note, users may need to create an account with Docker-Hub
to install Docker.)

Figure 1: An outline of the outsider module ecosystem.

Code structure

The code-base that allows for the installation, execution and development of outsider mod-
ules is held across three different R packages. For end-users of modules, however, only
the outsider module is required. For those who wish to develop their own modules, the
outsider.devtools package provides helper functions for doing so. In addition, there is
a test suites repository that hosts mock analysis pipelines that initiate several modules in
sequence to test the interaction of all the packages.

• outsider: The main package for installing, importing and running outsider modules
(Bennett, 2020a).

• outsider.base: The package for low-level interaction between module R code and
Docker containers (not user-facing) (Bennett, 2020b).

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

2

https://docs.ropensci.org/outsider/articles/available.html
https://github.com/ropensci/outsider
https://github.com/ropensci/outsider.base
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

• outsider.devtools: The development tools package for facilitating the creation of
new modules (Bennett, 2020c).

• “outsider-testuites”: A repository hosting a series of “test” pipelines for ensuring mod-
ules can be successfully strung together to form R/non-R workflows (Bennett, 2020d).

Figure 2: How the outsider packages interact

Examples

Saying hello from Ubuntu

By hosting a Docker container, outsider can run any UNIX-based, external command-line
program. To demonstrate this process we can say “hello world” via a container hosting the
Ubuntu operating system. In this short example, we will install a small outsider module –
om..hello.world – that installs a local copy of the latest version of Ubuntu and contains a
function for saying hello using the command echo.

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

3

https://github.com/ropensci/outsider.devtools
https://github.com/ropensci/outsider-testsuites
https://en.wikipedia.org/wiki/Ubuntu
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

library(outsider)
outsider modules are hosted on GitHub
this repo is a demonstration of an outsider module
it contains a function for printing 'Hello World!'
repo <- 'dombennett/om..hello.world'
module_install(repo = repo)

look up the help files for the module
module_help(repo = repo)

import the 'hello_world' function
hello_world <- module_import(fname = 'hello_world', repo = repo)

run the imported function
hello_world()
#> Hello world!
#> ------------
#> DISTRIB_ID=Ubuntu
#> DISTRIB_RELEASE=18.04
#> DISTRIB_CODENAME=bionic
#> DISTRIB_DESCRIPTION="Ubuntu 18.04.1 LTS"

A basic bioinformatic pipeline

To better demonstrate the power of the outsider package, we will run a simple bioinfor-
matic pipeline that downloads a file of biological sequence data (borrowed from (Hesselberth,
2017)) and aligns the separate strands of DNA using the multiple sequence alignment program
MAFFT (Katoh et al., 2005). Note that we can pass arguments to an outsider module,
such as mafft in the example below, using separate R arguments for each command-line
argument.

library(outsider)
repo <- 'dombennett/om..mafft'
module_install(repo = repo)
mafft <- module_import(fname = 'mafft', repo = repo)

some example file
download.file('https://molb7621.github.io/workshop/_downloads/sample.fa',

'sample.fa')

run maft with --auto and write results to alignment.fa
mafft(arglist = c('--auto', 'sample.fa', '>', 'alignment.fa'))

view alignment
cat(readLines('alignment.fa'), sep = '\n')
#> >derice
#> -actgactagctagctaactg
#> >sanka
#> -gcatcgtagctagctacgat
#> >junior
#> catcgatcgtacgtacg-tag
#> >yul
#> -atcgatcgatcgtacgatcg

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

4

https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

For more detailed and up-to-date examples and tutorials, see the outsider GitHub
page (Bennett, 2020e).

Availability

outsider (and its sister packages) are open-source software made available under the MIT
licence allowing reuse of the software with limited constraints. It is aimed that all packages
will be made available through CRAN (CRAN, 2019), e.g. install.package("outsider").
Currently, all are available from GitHub source code repositories using the remotes package,
e.g. remotes::install_github("ropensci/outsider")

Funding

This package has been developed as part of the supersmartR project (Bennett, 2018) which has
received funding through A.A. (from the Swedish Research Council [B0569601], the Swedish
Foundation for Strategic Research and a Wallenberg Academy Fellowship) and through D.S.
(from the Swedish Research Council [2015-04748]).

Acknowledgements

The authors wish to thank Daniel Nüst and Bob Rudis for taking the time to review the
package and providing valuable ideas and suggestions. Additionally, we would like to thank
Anna Krystalli for overseeing the review process and providing useful advice in turn. Finally,
we would like to thank all the people behind ROpenSci and JOSS for making this project and
its review possible.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/
S0022-2836(05)80360-2

Bennett, D. J. (2018). SupersmartR. Retrieved June 27, 2018, from https://github.com/
AntonelliLab/supersmartR

Bennett, D. J. (2020a). Outsider: Install and run programs, outside of r, inside of r. doi:10.
5281/zenodo.3615177

Bennett, D. J. (2020b). Outsider: Base package. doi:10.5281/zenodo.3615056
Bennett, D. J. (2020c). Outsider: Development tools package. doi:10.5281/zenodo.3615074
Bennett, D. J. (2020d). Outsider: Test suites. doi:10.5281/zenodo.3614982
Bennett, D. J. (2020e). Outsider: Install and run programs, outside of r, inside of r. Retrieved

January 20, 2020, from https://github.com/ropensci/outsider
BitBucket. (2019). Bitbucket. Retrieved October 29, 2019, from https://bitbucket.org/
Bouckaert, T. G. A. B.-S., Remco AND Vaughan. (2019). BEAST 2.5: An advanced software

platform for bayesian evolutionary analysis. PLOS Computational Biology, 15(4), 1–28.
doi:10.1371/journal.pcbi.1006650

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

5

https://github.com/nuest
https://github.com/hrbrmstr
https://github.com/annakrystalli
https://ropensci.org/
https://joss.theoj.org/
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://github.com/AntonelliLab/supersmartR
https://github.com/AntonelliLab/supersmartR
https://doi.org/10.5281/zenodo.3615177
https://doi.org/10.5281/zenodo.3615177
https://doi.org/10.5281/zenodo.3615056
https://doi.org/10.5281/zenodo.3615074
https://doi.org/10.5281/zenodo.3614982
https://github.com/ropensci/outsider
https://bitbucket.org/
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

CRAN. (2019). The comprehensive r archive network. Retrieved January 10, 2019, from
https://cran.r-project.org

Docker Inc. (2020a). Docker. Retrieved January 23, 2020, from https://www.docker.com/
Docker Inc. (2020b). Docker desktop. Retrieved January 23, 2020, from https://www.

docker.com/products/docker-desktop
Docker Inc. (2020c). Docker toolbox. Retrieved January 23, 2020, from https://docs.docker.

com/toolbox/
GitHub. (2019). GitHub. Retrieved February 11, 2019, from https://www.github.com/
GitLab. (2019). GitLab. Retrieved October 29, 2019, from https://gitlab.com/
Hesselberth, J. (2017). Genome analysis workshop. Retrieved June 27, 2018, from https:

//molb7621.github.io/workshop/
Katoh, K., Kuma, K.-i., Toh, H., & Miyata, T. (2005). MAFFT version 5: Improvement in

accuracy of multiple sequence alignment. Nucleic acids research, 33(2), 511–8. doi:10.
1093/nar/gki198

Ooms, J. (2019). Sys: Powerful replacements for base::System2. Retrieved January 10, 2019,
from https://github.com/jeroen/sys

Rabosky, D. L. (n.d.). Automatic Detection of Key Innovations, Rate Shifts, and Diversity-
Dependence on Phylogenetic Trees. PLOS ONE, 9(2), e89543. doi:10.1371/journal.pone.
0089543

RStudio. (2019). Reticulate: R interface to python. Retrieved January 10, 2019, from
https://github.com/rstudio/reticulate

Silvestro, D., Salamin, N., & Schnitzler, J. (2014). PyRate: A new program to estimate
speciation and extinction rates from incomplete fossil data. Methods in Ecology and
Evolution, 5(10), 1126–1131. doi:10.1111/2041-210X.12263

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22(21),
2688–90. doi:10.1093/bioinformatics/btl446

Urbanek, S. (2019). RJava: R to java interface. Retrieved January 10, 2019, from https:
//github.com/s-u/rJava

Bennett et al., (2020). outsider: Install and run programs, outside of R, inside of R. Journal of Open Source Software, 5(45), 2038. https:
//doi.org/10.21105/joss.02038

6

https://cran.r-project.org
https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://www.github.com/
https://gitlab.com/
https://molb7621.github.io/workshop/
https://molb7621.github.io/workshop/
https://doi.org/10.1093/nar/gki198
https://doi.org/10.1093/nar/gki198
https://github.com/jeroen/sys
https://doi.org/10.1371/journal.pone.0089543
https://doi.org/10.1371/journal.pone.0089543
https://github.com/rstudio/reticulate
https://doi.org/10.1111/2041-210X.12263
https://doi.org/10.1093/bioinformatics/btl446
https://github.com/s-u/rJava
https://github.com/s-u/rJava
https://doi.org/10.21105/joss.02038
https://doi.org/10.21105/joss.02038

	Statement of need
	Summary
	How it works
	Code structure

	Examples
	Saying hello from Ubuntu
	A basic bioinformatic pipeline

	Availability
	Funding
	Acknowledgements
	References

