
MF2: A Collection of Multi-Fidelity Benchmark
Functions in Python
Sander van Rijn1 and Sebastian Schmitt2

1 Leiden University, The Netherlands 2 Honda Research Institute Europe, Germany
DOI: 10.21105/joss.02049

Software
• Review
• Repository
• Archive

Editor: Melissa Weber
Mendonça
Reviewers:

• @torressa
• @zbeekman

Submitted: 17 January 2020
Published: 25 August 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The field of (evolutionary) optimization algorithms often works with expensive black-box op-
timization problems. However, for the development of novel algorithms and approaches,
real-world problems are not feasible due to their high computational cost. Instead, benchmark
functions such as Sphere, Rastrigin, and Ackley are typically used. These functions are not
only fast to compute, but also have known properties which are very helpful when examining
the performance of new algorithms.
As only a limited set of benchmark functions are typically used in the literature, compiling a
set of implementations for the most commonly used functions is warranted. This ensures cor-
rectness of the functions, makes any results directly comparable, and simply saves researchers
time from not having to implement the functions themselves. An example of a commonly
used benchmark suite for optimizing continuous problems is the COCO BBOB software by
Hansen et al. (2019).
As simulation-based problems in engineering are requiring increasingly more time and computa-
tion power, a new sub-field of multi-fidelity optimization has gained popularity. A multi-fidelity
problem is characterised by having multiple versions of an evaluation function that differ in
their accuracy of describing the real objective. A real-world example would be the aerody-
namic efficiency of an airfoil: A low-fidelity simulation would use a coarse mesh, and give
lower accuracy, but be fast to calculate, while a high-fidelity simulation would use a much
finer mesh and therefore be more accurate while taking longer to calculate. Multi-fidelity
methods aim to combine these multiple information sources to obtain better results in equal
or less time compared to only using a single information source.
To this end, new multi-fidelity benchmark functions have been introduced in the literature and
are being adopted by other researchers. These multi-fidelity problems naturally benefit from
having the different fidelities combined into a single ‘problem’. The existing single-fidelity
benchmark suites that exist cannot be used for this field: no existing suite of benchmark
functions currently uses such a structure, or can easily accomodate it. Therefore, this new
class of benchmark problems is best served by introducing a new implementation suite because
their structure is inherently different from other benchmarks. A new suite additionally gives
more freedom to adapt to new multi fidelity benchmarks as the field continues to evolve and
new needs become apparent.
The MF2 package provides a consistent Python implementation of a collection of these Multi-
Fidelity Functions. It uses a standard interface that allows for querying single vectors or
multiple row-vectors as a single matrix, relying on numpy’s optimized back-end to handle
parallelization. It also offers a simple factory pattern interface for functions with parameters
for e.g. correlation and dimensionality. A plot of how these implementations scale can be
seen in Figure 1.
At this moment, MF2 has collected functions from the following previous works:

van Rijn et al., (2020). MF2: A Collection of Multi-Fidelity Benchmark Functions in Python. Journal of Open Source Software, 5(52), 2049.
https://doi.org/10.21105/joss.02049

1

https://doi.org/10.21105/joss.02049
https://github.com/openjournals/joss-reviews/issues/2049
https://github.com/sjvrijn/mf2
https://doi.org/10.5281/zenodo.3998591
http://mtm.ufsc.br/~melissa
http://mtm.ufsc.br/~melissa
https://github.com/torressa
https://github.com/zbeekman
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02049


• Forrester, Sóbester, & Keane (2007) introduced a simple 1D bi-fidelity function for
mostly illustrative purposes.

• Surjanovic & Bingham (2013) have previously collected a small collection of MATLAB/R
implementations for the Borehole, Currin and Park91 A and B functions.

• Dong, Song, Wang, & Huang (2015) introduced bi-fidelity versions of the Bohachevsky,
Booth, Branin, Himmelblau and Six-hump Camelback functions.

• Toal (2015) introduced correlation-adjustable multi-fidelity versions of the Branin, Pa-
ciorek, Hartmann3 and Trid functions.

As no convenient existing implementations written in Python could be found during the au-
thors’ research on how the accuracy of multi-fidelity surrogate models depends on the number
of samples per fidelity, which required the evaluation of many independent model training and
test sets, the decision was made to standardize the implementations and make them available
for wider use.

100 101 102 103 104 105 106 107

N

100

101

102

103

104

105

t/t
0

high fidelity
Forrester
Hartmann3
Hartmann6
Borehole
Trid
Mean of 8 2D functions
Mean of 2 4D functions

100 101 102 103 104 105 106 107

N

100

101

102

103

104

105

t/t
0

low fidelity
Forrester
Hartmann3
Hartmann6
Borehole
Trid
Mean of 8 2D functions
Mean of 2 4D functions

Scalability of mf2-functions

Figure 1: Scalability plot This plot shows how the evaluation time of high- and low-fidelity functions
scales with the number of points N being passed in simultaneously. Running times were measured on
a desktop PC with an Intel core i7 5820k 6-core CPU, with Python 3.6.3 and Numpy 1.18.4. The
times are divided by the time needed for N=1 as a normalization. This is done independently for
each function and fidelity level. Results are grouped by function dimensionality. If there are multiple
functions, the mean is plotted with error bars indicating the minimum and maximum time. Note
that the 3D Hartmann3 and 6D Hartmann6 function are significantly more computationally expensive
than other functions by definition, as they requires multiple matrix multiplications.

Acknowledgements

This work is part of the research program DAMIOSO with project number 628.006.002, which
is partly financed by the Netherlands Organisation for Scientific Research (NWO).
The first author would like to thank dr. Matthijs van Leeuwen, prof. dr. Thomas Bäck, and
dr. Markus Olhofer for their supervision and involvement in the DAMIOSO project.

References

Dong, H., Song, B., Wang, P., & Huang, S. (2015). Multi-Fidelity Information Fusion Based

van Rijn et al., (2020). MF2: A Collection of Multi-Fidelity Benchmark Functions in Python. Journal of Open Source Software, 5(52), 2049.
https://doi.org/10.21105/joss.02049

2

https://doi.org/10.21105/joss.02049


on Prediction of Kriging. Struct. Multidiscip. Optim., 51(6), 1267–1280. doi:10.1007/
s00158-014-1213-9

Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2007). Multi-Fidelity Optimization via
Surrogate Modelling. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 463(2088), 3251–3269. doi:10.1098/rspa.2007.1900

Hansen, N., Brockhoff, D., Mersmann, O., Tusar, T., Tusar, D., ElHara, O. A., Sampaio,
P. R., et al. (2019). COmparing Continuous Optimizers: numbbo/COCO on Github.
Zenodo. doi:10.5281/zenodo.2594848

Surjanovic, S., & Bingham, D. (2013). Virtual library of simulation experiments: Test func-
tions and datasets. Retrieved October 10, 2017, from http://www.sfu.ca/~ssurjano.

Toal, D. J. J. (2015). Some Considerations Regarding the Use of Multi-Fidelity Kriging in the
Construction of Surrogate Models. Structural and Multidisciplinary Optimization, 51(6),
1223–1245. doi:10.1007/s00158-014-1209-5

van Rijn et al., (2020). MF2: A Collection of Multi-Fidelity Benchmark Functions in Python. Journal of Open Source Software, 5(52), 2049.
https://doi.org/10.21105/joss.02049

3

https://doi.org/10.1007/s00158-014-1213-9
https://doi.org/10.1007/s00158-014-1213-9
https://doi.org/10.1098/rspa.2007.1900
https://doi.org/10.5281/zenodo.2594848
http://www.sfu.ca/~ssurjano
https://doi.org/10.1007/s00158-014-1209-5
https://doi.org/10.21105/joss.02049

	Summary
	Acknowledgements
	References

