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Summary

The field of (evolutionary) optimization algorithms often works with expensive black-box op-
timization problems. However, for the development of novel algorithms and approaches,
real-world problems are not feasible due to their high computational cost. Instead, benchmark
functions such as Sphere, Rastrigin, and Ackley are typically used. These functions are not
only fast to compute, but also have known properties which are very helpful when examining
the performance of new algorithms.
As only a limited set of benchmark functions are typically used in the literature, compiling a
set of implementations for the most commonly used functions is warranted. This ensures cor-
rectness of the functions, makes any results directly comparable, and simply saves researchers
time from not having to implement the functions themselves. An example of a commonly
used benchmark suite for optimizing continuous problems is the COCO BBOB software by
Hansen et al. (2019).
As simulation-based problems in engineering are requiring increasingly more time and computa-
tion power, a new sub-field of multi-fidelity optimization has gained popularity. A multi-fidelity
problem is characterised by having multiple versions of an evaluation function that differ in
their accuracy of describing the real objective. A real-world example would be the aerody-
namic efficiency of an airfoil: A low-fidelity simulation would use a coarse mesh, and give
lower accuracy, but be fast to calculate, while a high-fidelity simulation would use a much
finer mesh and therefore be more accurate while taking longer to calculate. Multi-fidelity
methods aim to combine these multiple information sources to obtain better results in equal
or less time compared to only using a single information source.
To this end, new multi-fidelity benchmark functions have been introduced in the literature and
are being adopted by other researchers. These multi-fidelity problems naturally benefit from
having the different fidelities combined into a single ‘problem’. The existing single-fidelity
benchmark suites that exist cannot be used for this field: no existing suite of benchmark
functions currently uses such a structure, or can easily accomodate it. Therefore, this new
class of benchmark problems is best served by introducing a new implementation suite because
their structure is inherently different from other benchmarks. A new suite additionally gives
more freedom to adapt to new multi fidelity benchmarks as the field continues to evolve and
new needs become apparent.
The MF2 package provides a consistent Python implementation of a collection of these Multi-
Fidelity Functions. It uses a standard interface that allows for querying single vectors or
multiple row-vectors as a single matrix, relying on numpy’s optimized back-end to handle
parallelization. It also offers a simple factory pattern interface for functions with parameters
for e.g. correlation and dimensionality. A plot of how these implementations scale can be
seen in Figure 1.
At this moment, MF2 has collected functions from the following previous works:
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• Forrester, Sóbester, & Keane (2007) introduced a simple 1D bi-fidelity function for
mostly illustrative purposes.

• Surjanovic & Bingham (2013) have previously collected a small collection of MATLAB/R
implementations for the Borehole, Currin and Park91 A and B functions.

• Dong, Song, Wang, & Huang (2015) introduced bi-fidelity versions of the Bohachevsky,
Booth, Branin, Himmelblau and Six-hump Camelback functions.

• Toal (2015) introduced correlation-adjustable multi-fidelity versions of the Branin, Pa-
ciorek, Hartmann3 and Trid functions.

As no convenient existing implementations written in Python could be found during the au-
thors’ research on how the accuracy of multi-fidelity surrogate models depends on the number
of samples per fidelity, which required the evaluation of many independent model training and
test sets, the decision was made to standardize the implementations and make them available
for wider use.
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Figure 1: Scalability plot This plot shows how the evaluation time of high- and low-fidelity functions
scales with the number of points N being passed in simultaneously. Running times were measured on
a desktop PC with an Intel core i7 5820k 6-core CPU, with Python 3.6.3 and Numpy 1.18.4. The
times are divided by the time needed for N=1 as a normalization. This is done independently for
each function and fidelity level. Results are grouped by function dimensionality. If there are multiple
functions, the mean is plotted with error bars indicating the minimum and maximum time. Note
that the 3D Hartmann3 and 6D Hartmann6 function are significantly more computationally expensive
than other functions by definition, as they requires multiple matrix multiplications.
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