
The pdb2sql Python Package: Parsing, Manipulation
and Analysis of PDB Files Using SQL Queries
Nicolas Renaud1 and Cunliang Geng1

1 Netherlands eScience Center, Science Park 140 1098 XG Amsterdam, the Netherlands
DOI: 10.21105/joss.02077

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @i-mtz
• @JoaoRodrigues
• @joaomcteixeira

Submitted: 27 January 2020
Published: 28 May 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The analysis of biomolecular structures is a crucial task for a wide range of applications
ranging from drug design to protein engineering. The Protein Data Bank (PDB) file format
(Burley et al., 2019) is the most popular format to describe biomolecular structures such as
proteins and nucleic acids. In this text-based format, each line represents a given atom and
entails its main properties such as atom name and identifier, residue name and identifier,
chain identifier, coordinates, etc. Several solutions have been developed to parse PDB files
into dedicated objects that facilitate the analysis and manipulation of biomolecular structures.
This is, for example, the case for the BioPython parser (Cock et al., 2009,@biopdb) that
loads PDB files into a nested dictionary, the structure of which mimics the hierarchical nature
of the biomolecular structure. Selecting a given sub-part of the biomolecule can then be
done by going through the dictionary and selecting the required atoms. Other packages,
such as ProDy (Bakan, Meireles, & Bahar, 2011), BioJava (Lafita, 2019), MMTK (Hinsen,
2000) and MDAnalysis (Gowers et al., 2016) to cite a few, also offer solutions to parse PDB
files. However, these parsers are embedded in large codebases that are sometimes difficult
to integrate with new applications and are often geared toward the analysis of molecular
dynamics simulations. Lightweight applications such as pdb-tools (Rodrigues, Teixeira,
Trellet, & Bonvin, 2018) lack the capabilities to manipulate coordinates.
We present here the Python package pdb2sql, which loads individual PDB files into a rela-
tional database. Among different solutions, the Structured Query Language (SQL) is a very
popular solution to query a given database. However SQL queries are complex and domain
scientists such as bioinformaticians are usually not familiar with them. This represents an
important barrier to the adoption of SQL technology in bioinformatics. pdb2sql exposes
complex SQL queries through simple Python methods that are intuitive for end users. As
such, our package leverages the power of SQL queries and removes the barrier that SQL
complexity represents. In addition, several advanced modules have also been built, for exam-
ple, to rotate or translate biomolecular structures, to characterize interface contacts, and to
measure structure similarity between two protein complexes. Additional modules can easily
be developed following the same scheme. As a consequence, pdb2sql is a lightweight and
versatile PDB tool that is easy to extend and to integrate with new applications.

Capabilities of pdb2sql

pdb2sql allows a user to query, manipulate, and process PDB files through a series of ded-
icated classes. We give an overview of these features and illustrate them with snippets of
code. More examples can be found in the documentation (https://pdb2sql.readthedocs.io).

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

1

https://doi.org/10.21105/joss.02077
https://github.com/openjournals/joss-reviews/issues/2077
https://github.com/DeepRank/pdb2sql
https://doi.org/10.5281/zenodo.3860329
https://lpantano.github.io/
https://github.com/i-mtz
https://github.com/JoaoRodrigues
https://github.com/joaomcteixeira
http://creativecommons.org/licenses/by/4.0/
https://pdb2sql.readthedocs.io
https://doi.org/10.21105/joss.02077

Extracting data from PDB files

pdb2sql allows a user to simply query the database using the get(attr, **kwargs) method.
The attribute attr here is a list of or a single column name of the SQL database; see Table
1 for available attributes. The keyword argument kwargs can then be used to specify a
sub-selection of atoms.
Table 1. Atom attributes and associated definitions in pdb2sql

Attribute Definition
serial Atom serial number
name Atom name
altLoc Alternate location indicator
resName Residue name
chainID Chain identifier
resSeq Residue sequence number
iCode Code for insertion of residues
x Orthogonal coordinates for X in Angstroms
y Orthogonal coordinates for Y in Angstroms
z Orthogonal coordinates for Z in Angstroms
occ Occupancy
temp Temperature factor
element Element symbol
model Model serial number

Every attribute name can be used to select specific atoms and multiple conditions can be
easily combined. For example, let’s consider the following example:

from pdb2sql import pdb2sql
pdb = pdb2sql('1AK4.pdb')
atoms = pdb.get('x,y,z',

name=['C','H'],
resName=['VAL','LEU'],
chainID='A')

This snippet extracts the coordinates of the carbon and hydrogen atoms that belong to all
the valine and leucine residues of the chain labelled A in the PDB file. Atoms can also be
excluded from the selection by appending the prefix no_ to the attribute name. This is the
case in the following example:

from pdb2sql import pdb2sql
pdb = pdb2sql('1AK4.pdb')
atoms = pdb.get('name, resName',

no_resName=['GLY', 'PHE'])

This snippet extracts the atom and residue names of all atoms except those belonging to the
glycine and phenylalanine residues of the structure. Similar combinations of arguments can be
designed to obtain complex selection rules that precisely select the desired atom properties.

Manipulating PDB files

The data contained in the SQL database can also be modified using the update(attr, v
als, **kwargs) method. The attributes and keyword arguments are identical to those in

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

2

https://doi.org/10.21105/joss.02077

the get method. The vals argument should contain a numpy array whose dimension should
match the selection criteria. For example:

import numpy as np
from pdb2sql import pdb2sql

pdb = pdb2sql('1AK4.pdb')
xyz = pdb.get('x,y,z', chainID='A', resSeq=1)
xyz = np.array(xyz)
xyz -= np.mean(xyz)
pdb.update('x,y,z', xyz, chainID='A', resSeq=1)

This snippet first extracts the coordinates of atoms in the first residue of chain A, then
translates this fragment to the origin and updates the coordinate values in the database.
pdb2sql also provides a convenient class transform to easily translate or rotate structures.
For example, to translate the first residue of the structure 5 Å along the Y-axis,

import numpy as np
from pdb2sql import pdb2sql
from pdb2sql import transform

pdb = pdb2sql('1AK4.pdb')
trans_vec = np.array([0,5,0])
transform.translation(pdb, trans_vec, resSeq=1, chainID='A')

One can also rotate a given selection around a given axis with the rotate_axis method:

angle = np.pi
axis = (1., 0., 0.)
transform.rot_axis(pdb, axis, angle, resSeq=1, chainID='A')

Identifying interface

The interface class is derived from the pdb2sql class and offers functionality to identify
contact atoms or residues between two different chains with a given contact distance. It is
useful for extracting and analysing the interface of, e.g., protein-protein complexes. The fol-
lowing example snippet returns all the atoms and all the residues of the interface of ‘1AK4.pdb’
defined by a contact distance of 6 Å.

from pdb2sql import interface

pdb = interface('1AK4.pdb')
atoms = pdb.get_contact_atoms(cutoff=6.0)
res = pdb.get_contact_residues(cutoff=6.0)

It is also possible to directly create an interface instance with a pdb2sql instance as
input. In this case, all the changes in the pdb2sql instance before creating the new inter
face instance will be kept in the interface instance; afterwards, the two instances will be
independent, which means changes in one will not affect the other.

from pdb2sql import pdb2sql
from pdb2sql import interface

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

3

https://doi.org/10.21105/joss.02077

pdb = pdb2sql('1AK4.pdb')
pdbitf = interface(pdb)
atoms = pdbitf.get_contact_atoms(cutoff=6.0)
res = pdbitf.get_contact_residues(cutoff=6.0)

Computing Structure Similarity

The StructureSimilarity class allows a user to compute similarity measures between
two protein-protein complexes. Several popular measures used to classify qualities of protein
complex structures in the CAPRI (Critical Assessment of PRedicted Interactions) challenges
(Méndez, Leplae, Maria, & Wodak, 2003) have been implemented: interface rmsd, ligand
rmsd, fraction of native contacts and DockQ (Basu & Wallner, 2016). The approach imple-
mented to compute the interface rmsd and ligand rmsd is identical to the well-known package
ProFit (Martin & Porter, 2009). All the methods required to superimpose structures have
been implemented in the transform class and therefore this relies on no external dependen-
cies. The following snippet shows how to compute these measures:

from pdb2sql import StructureSimilarity

sim = StructureSimilarity(decoy = '1AK4_model.pdb',
ref = '1AK4_xray.pdb')

irmsd = sim.compute_irmsd_fast()
lrmsd = sim.compute_lrmsd_fast()
fnat = sim.compute_fnat_fast()
dockQ = sim.compute_DockQScore(fnat, lrmsd, irmsd)

Application

psb2sql has been used at the Netherlands eScience center for bioinformatics projects. This
is, for example, the case of iScore (Geng et al., 2019), which uses graph kernels and support
vector machines to rank protein-protein interfaces. We illustrate the use of the package here
by computing the interface rmsd and ligand rmsd of a series of structural models using the
experimental structure as a reference. This is a common task for protein-protein docking,
where a large number of docked conformations are generated and have then to be compared
to ground truth to identify the best-generated poses. This calculation is usually done using
the ProFit software and we, therefore, compare our results with those obtained with ProFit.
The code to compute the similarity measure for different decoys is simple:

from pdb2sql import StructureSimilarity

ref = '1AK4.pdb'
decoys = os.listdir('./decoys')
irmsd = {}

for d in decoys:g
sim = StructureSimilarity(d, ref)
irmsd[d] = sim.compute_irmsd_fast(method='svd', izone='1AK4.izone')

Note that the method will compute the i-zone, i.e., the zone of the proteins that form the
interface in a similar way to ProFit. This is done for the first calculations and the i-zone is

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

4

https://doi.org/10.21105/joss.02077

then reused for the subsequent calculations. The comparison of our interface rmsd values to
those given by ProFit is shown in Fig 1.

Figure 1. Left - Superimposed model (green) and reference (cyan) structures. Right - com-
parison of interface rmsd values given by pdb2sql and by ProFit.

Acknowledgements

We acknowledge contributions from Li Xue, Sonja Georgievska, and Lars Ridder.

References

Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein Dynamics Inferred from The-
ory and Experiments. Bioinformatics, 27(11), 1575–1577. doi:10.1093/bioinformatics/
btr168

Basu, S., & Wallner, B. (2016). DockQ: A quality measure for protein-protein docking models.
PLOS ONE, 11(8), e0161879. doi:10.1371/journal.pone.0161879

Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Costanzo, L. D., Christie, C., et
al. (2019). Protein data bank: The single global archive for 3D macromolecular structure
data. Nucleic Acids Research, 47(D1), D520–D528. doi:10.1093/nar/gky949

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I.,
et al. (2009). Biopython: freely available Python tools for computational molecular biol-
ogy and bioinformatics. Bioinformatics, 25(11), 1422–1423. doi:10.1093/bioinformatics/
btp163

Geng, C., Jung, Y., Renaud, N., Honavar, V., Bonvin, A. M. J. J., & Xue, L. C. (2019).
iScore: A novel graph kernel-based function for scoring protein-protein docking models.
Bioinformatics. doi:10.1093/bioinformatics/btz496

Gowers, Linke, Barnoud, Reddy, Melo, Seyler, Domański, et al. (2016). MDAnalysis: A
Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Sebastian
Benthall & Scott Rostrup (Eds.), Proceedings of the 15th Python in Science Conference
(pp. 98–105). doi:10.25080/Majora-629e541a-00e

Hamelryck, T., & Manderick, B. (2003). PDB file parser and structure class implemented in
Python. Bioinformatics, 19(17), 2308–2310. doi:10.1093/bioinformatics/btg299

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

5

https://doi.org/10.1093/bioinformatics/btr168
https://doi.org/10.1093/bioinformatics/btr168
https://doi.org/10.1371/journal.pone.0161879
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btz496
https://doi.org/%2010.25080/Majora-629e541a-00e%20
https://doi.org/10.1093/bioinformatics/btg299
https://doi.org/10.21105/joss.02077

Hinsen, K. (2000). The molecular modeling toolkit: A new approach to molecular
simulations. Journal of Computational Chemistry, 21(2), 79–85. doi:10.1002/(SICI)
1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B

Lafita, S. A. P., Aleix AND Bliven. (2019). BioJava 5: A community driven open-source
bioinformatics library. PLOS Computational Biology, 15(2), 1–8. doi:10.1371/journal.
pcbi.1006791

Martin, A. C. R., & Porter, C. T. (2009). ProFit3.1. Retrieved from http://www.bioinf.org.
uk/software/profit/

Méndez, R., Leplae, R., Maria, L. D., & Wodak, S. J. (2003). Assessment of blind predictions
of protein–protein interactions: Current status of docking methods. Proteins: Structure,
Function, and Bioinformatics, 52(1), 51–67. doi:10.1002/prot.10393

Rodrigues, J. P. G. L. M., Teixeira, J. M. C., Trellet, M., & Bonvin, A. M. J. J. (2018).
pdb-tools: A swiss army knife for molecular structures. bioRxiv. doi:10.1101/483305

Renaud et al., (2020). The pdb2sql Python Package: Parsing, Manipulation and Analysis of PDB Files Using SQL Queries. Journal of Open
Source Software, 5(49), 2077. https://doi.org/10.21105/joss.02077

6

https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2%3C79::AID-JCC1%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2%3C79::AID-JCC1%3E3.0.CO;2-B
https://doi.org/10.1371/journal.pcbi.1006791
https://doi.org/10.1371/journal.pcbi.1006791
http://www.bioinf.org.uk/software/profit/
http://www.bioinf.org.uk/software/profit/
https://doi.org/10.1002/prot.10393
https://doi.org/10.1101/483305
https://doi.org/10.21105/joss.02077

	Summary
	Capabilities of pdb2sql
	Extracting data from PDB files
	Manipulating PDB files
	Identifying interface
	Computing Structure Similarity

	Application
	Acknowledgements
	References

