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Summary

The laws that govern natural systems can often be modelled mathematically using partial
differential equations (PDEs). Usually the resultant PDEs are not solvable analytically, leaving
numerical solutions as the only recourse to gain useful insights into such systems. As a result, it
is important to efficiently calculate numerical solutions of PDEs to further our understanding
of such systems. In this paper we briefly describe the design and validation of SARAS, a
general-purpose PDE solver based on finite difference method (Anderson, 1995; Ferziger &
Peric, 2001).

Statement of Need

There are a number of open-source solvers for Computational Fluid Dynamics. Some well
known solvers include OpenFOAM (Weller et al., 1998), Pencil Code (Brandenburg & Dobler,
2002), Gerris (Popinet, 2003), SU2 (Palacios et al., 2013), etc. to name a few. However,
many of them, for instance, SU2, OpenFOAM, etc. use finite-volume method with structured
or unstructured meshes. On the other hand, the use of finite-difference method restricts the
solver to simpler domains, but offers comparatively higher accuracy with lesser computational
effort. In this regard, the Pencil Code also uses finite-difference method, but is used to solve
compressible flows, unlike SARAS which is designed for incompressible flows. Moreover, SARAS
is written in C++ with an object oriented structure like OpenFOAM.
The design of SARAS is inspired by TARANG (Verma et al., 2013), a pseudo-spectral solver
developed in our lab. TARANG has been shown to scale up to 196608 cores (Chatterjee et al.,
2018), and SARAS has been designed with the goal of achieving similar scaling performance.
We conducted a preliminary scaling analysis of SARAS using up to 1024 cores for the lid-driven
cavity (LDC) problem on a 5123 grid, and observed strong scaling (Verma et al., 2020).
However, we need to implement further optimizations to the code before scaling to larger
grids and more cores. In solving the Rayleigh Benard Convection problem, we also observed
that the computational efficiency of SARAS is at par with that of OpenFOAM. Recently, we
also performed a comparative study between spectral and finite difference codes in the context
of exascale computing (Verma et al., 2020), using SARAS.
In SARAS, the underlying mathematical constructs like vector and scalar fields are defined as
classes. Moreover, vector calculus operations associated with such fields, like gradient and
divergence, are defined using these classes. This design makes the code intuitive, allowing
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users to quickly cast PDEs into readable codes. The initial conditions, boundary conditions,
and source/forcing terms are implemented using initial, boundary and force classes.
These classes are readily extensible so that users can add custom initial conditions, source
terms, and so on.
SARAS includes solvers for hydrodynamic flows, namely the incompressible Navier-Stokes ini-
tial value problem (IVP), as well as for scalar convection, like Rayleigh Benard Convection.
Presently, we use semi-implicit Crank-Nicholson (Crank & Nicolson, 1947) method for time-
advancing the IVP. The solver uses Marker and Cell method (MAC) (Harlow & Welch, 1965)
for discretizing the velocity and pressure fields.

Mathematics

The Navier-Stokes equations, which govern the dynamics of fluid flow, can be written as

∂u

∂t
+ u · ∇u = −∇p+ f + ν∇2u,

where u is the velocity field, p is the pressure field, f is the forcing term, and ν is the kinematic
viscosity of the fluid. The fluid is assumed to be incompressible. Hence ∇·u = 0, and density
is constant (chosen to be unity).
If the velocity and pressure field at time t = tn are denoted as un and pn respectively, then
the corresponding fields at the next time-step, t = tn+1, namely un+1 and pn+1, can be
calculated as described below (Anderson, 1995; Ferziger & Peric, 2001; Patankar & Spalding,
1972). We compute an intermediate velocity field using the known values, un and pn, as

u∗ = un +∆t

[
ν∇2

(
un + u∗

2

)
− un.∇un −∇pn

]
.

The forcing term has been neglected here for simplicity. Note that the diffusion term (also
called the viscous term) is handled semi-implicitly, with equal contribution from un and u∗,
as given below:

u∗ −∆t

[
ν∇2u∗

2

]
= un +∆t

[
ν∇2un

2
− un.∇un −∇pn

]
.

The above equation has to be solved iteratively, and this is achieved through Jacobi iterations.
The intermediate velocity field, u∗, does not satisfy the continuity equation, and requires
appropriate correction. This correction is obtained from the pressure correction term, which
is calculated using the pressure Poisson equation,

∇2p∗ =
∇.u∗

∆t
.

SARAS uses a Geometric Multigrid library to solve the above equation (Briggs et al., 2000;
Wesseling, 2004). Presently the library employs the Full Multigrid (FMG) V-Cycle to solve
the Poisson equation. Other methods like F-Cycle and W-Cycle are planned updates to the
library in future.
Finally, using the above pressure correction, the velocity and pressure fields corresponding to
the next time-step are obtained as

pn+1 = pn + p∗,

un+1 = u∗ −∆t(∇p∗).

The numerical implementation of the above procedure will be discussed in the next section.
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Numerical Method and Implementation

SARAS uses finite-difference method (Ferziger & Peric, 2001) to calculate derivatives of the
field variables. Presently the solver uses second-order central difference stencils to compute
first and second derivatives. We use a highly optimized and fast array manipulation library,
Blitz++ (Veldhuizen, 1998), for all array operations. Blitz++ also offers finite-difference
stencils on uniformly spaced grids. SARAS augments this feature with grid-transformation
terms (Anderson, 1995) to perform simulations on grids with non-uniform spacing.
SARAS offers a set of extensible boundary and initial conditions, as well as source terms.
Presently the solver can switch between periodic, Neumann, and Dirichlet boundary condi-
tions. There also exists a mixed boundary condition class that can simulate many practical
applications, such as a conducting heating plate on an adiabatic wall (Teimurazov et al.,
2017). Currently the solver is restricted to Cartesian grids, but it will be extended to cylindri-
cal, toroidal, and spherical grids in the future. The solver also supports adaptive time-stepping,
where the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928) is used to dynam-
ically compute the appropriate time-step.

Results

We validate our code using two very well-known test problems: lid-driven cavity and decaying
turbulence. We simulate these problems using SARAS and compare the results with standard
and validated solutions.

Problem 1

We solve the two-dimensional lid-driven cavity (LDC) problem using SARAS, and compare the
results with those of Ghia et al. (1982). LDC is an important fluid system and it serves as a
benchmark for testing numerical methods. This system consists of a square cavity of dimension
1 × 1 with no-slip boundary conditions on all the four walls. However, the top wall moves
laterally to the right with a constant velocity of U = 1.0 that serves as the reference velocity
for non-dimensionalization of the problem. The length of the side of the cavity, L = 1.0, is
the reference length. The Reynolds number of the flow is approximately Re ≈ 1000.
At the start of the simulation, the fluid, which is at rest, is driven impulsively by the top
lid. This results in the formation of a vortex at the upper-right corner of the cavity, and this
vortex rapidly grows in size and occupies the entire region of the cavity. For the simulation
we employ a 129 × 129 grid, and carry it out till t = 30. The solver computes this solution
using 4 MPI processes in approximately 12 minutes on an Intel workstation. The output by
SARAS at the final time is used for comparison with the results of Ghia et al. (1982)
In the website we supply the Bash and Python scripts to compile and run this test case. After
automatic execution of SARAS, a Python script reads the output from SARAS and compares
the horizontal and vertical velocity profiles across the geometric center of the square cavity.
The corresponding results from Ghia et al. (1982) are also available with the installation. We
compare the two results and exhibit them in Figure 1. We observe that the profiles computed
by SARAS match very well with those by Ghia et al. (1982), thus providing a strong validation
for our code. This quick validation of the solver, which can be done as a part of its installation,
is one of the strengths of this package.
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Figure 1: Velocity profiles from the simulation of lid-driven cavity on a 1292 grid with SARAS (orange
lines), plotted along with the data from Ghia et al. (1982) (blue stars): (a) The vertical profile of
the x-component of velocity, ux, along the line across the geometric center of the cavity (b) The
horizontal profile of the z-component of velocity, uz, along the line across the geometric center of
the cavity.

Problem 2

We simulate decaying turbulence using SARAS with Taylor-Green vortex (Taylor & Green,
1937) as the initial condition. That is,

u(x, y, z, t = 0) = u0

 sin(2πk0x) cos(2πk0y) cos(2πk0z)
− cos(2πk0x) sin(2πk0y) cos(2πk0z)

0

 ,

where u0 = 1 and k0 = 1. We perform our simulation in a periodic box of size 1 × 1 × 1
(L = 1) with a grid resolution of 2573 up to t = 3.0. Here, we nondimensionalize time
using L/u0. The initial Reynolds number of the flow is Re = 1000. We choose a constant
dt = 0.001 for time-integration. Besides, we use a uniform mesh along all the three directions.
To validate the accuracy of the finite difference scheme of SARAS, we compare the results of
SARAS with those of a pseudo-spectral code TARANG, which has been benchmarked and scaled
up to 196608 cores of Cray XC40, Shaheen II of KAUST (Chatterjee et al., 2018; Verma et
al., 2013). Note that pseudo-spectral method yields very accurate derivatives (Canuto et al.,
1988). We perform our spectral simulation using the same initial condition and grid resolution
as above, up to t = 3.0. The comparison of the results from the two codes is discussed below.
Comparison of SARAS results with those of TARANG provides another validation of SARAS.
The results of TARANG and SARAS are quite similar, as exhibited in Figures 2 and 3. In Figure
2(a) we exhibit the plots of the total energy (

∫
dru2/2) vs. time for both the runs. As is

evident from the plots, both the codes yield very similar evolution profiles for the total energy.
In addition, we also compute the energy spectra for the results at t = 1. As shown in Figure
2(b), both the energy spectra are very similar. Interestingly, in both the plots, the energy
spectra in the inertial range are close to the k−5/3 power law (Kolmogorov, 1941; Verma,
2019).
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Figure 2: For the simulation of decaying turbulence on a 2573 grid with TARANG (thick blue lines)
and SARAS (red-dashed lines): (a) plot of the total energy Eu =

∫
dru2/2 vs t, (b) plot of Eu(k) vs

k at t = 1.

Figure 3 exhibits the magnitude of velocity, |u|, on the horizontal mid-plane (z = 1/2) at
t = 1 and t = 3. Clearly, the results of TARANG and SARAS are very similar.
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Figure 3: For the simulation of decaying turbulence on a 2573 grid, vector plots of the velocity field,
and the density plots of the magnitude of velocity (|u|) computed at the horizontal mid-plane: for
the data from TARANG(a, c), and SARAS(b, d) at t = 1 (top row) and t = 3 (bottom row).

Conclusions

This paper provides a brief description and validations tests of a new parallel finite-difference
code SARAS. SARAS has been designed as a general PDE solver using the object-oriented
features of C++. We validate SARAS using two test cases: lid-driven cavity and decaying
turbulence.
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