
ROSS - Rotordynamic Open Source Software
Raphael Timbó1, Rodrigo Martins2, Gabriel Bachmann4, Flavio
Rangel5, Júlia Mota3, Juliana Valério5, and Thiago G Ritto2

1 Petrobras - Petróleo Brasileiro S.A. 2 Universidade Federal do Rio de Janeiro, Department of
Mechanical Engineering, Rio de Janeiro, Brazil 3 Universidade Federal do Rio de Janeiro, Graduate
Program in Informatics, Rio de Janeiro, Brazil 4 Universidade Federal do Rio de Janeiro,
Department of Electrical Engineering, Rio de Janeiro, Brazil 5 Universidade Federal do Rio de
Janeiro, Department of Computer Science, Rio de Janeiro, Brazil

DOI: 10.21105/joss.02120

Software
• Review
• Repository
• Archive

Editor: Marie E. Rognes
Reviewers:

• @srmnitc
• @nnadeau

Submitted: 02 December 2019
Published: 09 April 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

There are several categories of critical rotating equipment crucial to industry, such as compres-
sors, pumps, and turbines. Computational mechanical models aim to simulate the behavior of
such mechanical systems and these models are used to support research and decision making.
To this purpose, we present ROSS, an open source library written in Python for rotordynamic
analysis.
Existing tools that have rotordynamic functionalities include commercial finite element soft-
ware with rotordynamic modules (“ANSYS - Mechanical Rotordynamics,” 2019; “COMSOL
- Rotordynamics Module,” 2019), packages based on proprietary runtimes (MATLAB) (“Dy-
namics of Rotating Machines,” 2019; “MADYN 2000,” 2019), and some standalone tools
(“ROTORINSA,” 2019; “XLTRC2,” 2019). To use all of these options however requires the
purchase of a license and they are not intended to be developed in an open, collaborative
manner. Additionally for some of these commercial packages, the user is ‘locked in’ to the en-
vironment, interacting with the software only through a graphical user interface, which makes
it harder (impossible sometimes) to automate analysis.
To our knowledge, ROSS is the first software being developed using the open source paradigm
in rotordynamic field, with the code being clearly licensed and fully available on code hosting
platforms, issues tracked online, and the possibility of direct contribution by the community.
ROSS allows the construction of rotor models and their numerical simulation. Shaft elements,
as a default, are modeled with the Timoshenko beam theory (Hutchinson, 2001), which
considers shear and rotary inertia effects, and discretized by means of the Finite Element
Method (Friswell, Penny, Garvey, & Lees, 2010). Disks (impellers, blades, or other equipment
attached to the rotor) are assumed to be rigid bodies, thus their strain energy is not taken
into account and only the kinetic energy due translation and rotation is calculated. We can
obtain the mass and gyroscopic matrices by applying Lagrange’s equations to the total kinetic
energy.
The mass matrix is given by:

Me =


md 0 0 0
0 md 0 0
0 0 Id 0
0 0 0 Ip

 (1)
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The gyroscopic matrix is given by:

Ge =


0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0

 (2)

Where:
• md is the disk mass;
• Id is the diametral moment of inertia;
• Ip is the polar moment of inertia.

For most types of bearing, the load-deflection relationship is nonlinear. Furthermore, load-
deflection relationships are often a function of shaft speed (i.e Ke = Ke(ω) and Ce = Ce(ω)).
To simplify dynamic analysis, one widely used approach is to assume that the bearing has a
linear load-deflection relationship. This assumption is reasonably valid, provided that the
dynamic displacements are small (Friswell et al., 2010). Thus, the relationship between the
forces acting on the shaft due to the bearing and the resultant velocities and displacements
of the shaft may be approximated by:

{
fx
fy

}
= −

[
kxx kxy
kyx kyy

]{
u
v

}
−

[
cxx cxy
cyx cyy

]{
u̇
v̇

}
(3)

where fx and fy are the dynamic forces in the x and y directions, and u and v are the dynamic
displacements of the shaft journal relative to the bearing housing in the x and y directions.
After defining the element matrices, ROSS performs the assembling of the global matrices
and the general form of the equation of the system is

Mq̈(t) +C(Ω)q̇(t) + ωGq̇(t) +K(Ω)q(t) = f(t) , (4)

where:
• q is the generalized coordinates of the system (displacements and rotations);
• M is the mass matrix;
• K is the stiffness matrix;
• C is the damping matrix;
• G is the gyroscopic matrix;
• Ω is the excitation frequency;
• ω is the rotor whirl speed;
• f is the generalized force vector.

After building a model with ROSS, the user can plot the rotor geometry, run simulations, and
obtain results in the form of graphics. ROSS can perform several analyses, such as static
analysis, whirl speed map, mode shapes, frequency response, and time response.
ROSS is extensible and new elements, such as different types of bearings or seals, can be added
to the code. As an example, one can add a class for a tapered roller bearing by inheriting
from BearingElement. The implementation of the BallBearingElement in our code uses
this strategy.
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Other elements that require more customization can be added by inheriting directly from
Element, in this case it is necessary to implement the required methods that should return
the element’s mass, stiffness, damping, and gyroscopic matrices.
We have built the package using main Python packages such as NumPy (Walt, Colbert, &
Varoquaux, 2011) for multi-dimensional arrays, SciPy (Virtanen et al., 2020) for linear algebra,
optimization, interpolation and other tasks and Bokeh (Bokeh Development Team, 2019) for
creating interactive plots. Developing the software using Python and its scientific ecosystem
enables the user to also make use of this ecosystem, making it easier to run rotordynamics
analysis. It is also easier to integrate the code into other programs, since we only use open
source packages and do not depend on proprietary commercial platforms.
Besides the documentation, a set of Jupyter Notebooks are available for the tutorial and some
examples. Users can also access these notebooks through a Binder server.
As an example, Figure 1 shows a centrifugal compressor modeled with ROSS.

Figure 1: Centrifugal Compressor modeled with ROSS.

The shaft elements are in gray, the impellers represented as disks are in blue and the bearings
are displayed as springs and dampers. This plot is generated with Bokeh, and we can use the
hover tool to get additional information for each element.
One analysis that can be carried out is the modal analysis. Figure 2 shows the whirl speed
map (Campbell Diagram) generated for this compressor; the natural frequencies and the log
dec vary with the machine rotation speed.
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Figure 2: Whirl speed map (Campbell Diagram) for the Centrifugal Compressor.

The whirl speed map is one of the results that can be obtained from the model, other types
of analyses can be found in the documentation.
ROSS has been used to evaluate the impact of damper seal coefficients uncertainties in a
compressor rotordynamics (Timbó & Ritto, 2019). Other projects are also using ROSS to
test machine learning algorithms that can diagnose machine failure. Here we can create a
model with some problem such as unbalance or misalignment and then use the output data
from this model to test the learning algorithm and check the accuracy of this algorithm in
diagnosing the problem.
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